kornosk commited on
Commit
91bdec2
·
1 Parent(s): d1f53e5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: "en"
3
+ tags:
4
+ - stance-detection
5
+ - election2020
6
+ license: "gpl-3.0"
7
+ ---
8
+
9
+ # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Donald Trump (KE-MLM)
10
+
11
+ Pre-trained weights for **KE-MLM model** in [Knowledge Enhance Masked Language Model for Stance Detection](https://2021.naacl.org/program/accepted/), NAACL 2021.
12
+
13
+ # Training Data
14
+
15
+ This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Donald Trump.
16
+
17
+ # Training Objective
18
+
19
+ This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Donald Trump.
20
+
21
+ # Usage
22
+
23
+ This pre-trained language model is fine-tuned to the stance detection task specifically for Donald Trump.
24
+
25
+ Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail.
26
+
27
+ ```python
28
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
29
+ import torch
30
+ import numpy as np
31
+
32
+ # choose GPU if available
33
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
+
35
+ # select mode path here
36
+ pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-trump-KE-MLM"
37
+
38
+ # load model
39
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path)
40
+ model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path)
41
+
42
+ id2label = {
43
+ 0: "AGAINST",
44
+ 1: "FAVOR",
45
+ 2: "NONE"
46
+ }
47
+
48
+ ##### Prediction Neutral #####
49
+ sentence = "Hello World."
50
+ inputs = tokenizer(sentence.lower(), return_tensors="pt")
51
+ outputs = model(**inputs)
52
+ predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist()
53
+
54
+ print("Sentence:", sentence)
55
+ print("Prediction:", id2label[np.argmax(predicted_probability)])
56
+ print("Against:", predicted_probability[0])
57
+ print("Favor:", predicted_probability[1])
58
+ print("Neutral:", predicted_probability[2])
59
+
60
+ ##### Prediction Favor #####
61
+ sentence = "Go Go Trump!!!"
62
+ inputs = tokenizer(sentence.lower(), return_tensors="pt")
63
+ outputs = model(**inputs)
64
+ predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist()
65
+
66
+ print("Sentence:", sentence)
67
+ print("Prediction:", id2label[np.argmax(predicted_probability)])
68
+ print("Against:", predicted_probability[0])
69
+ print("Favor:", predicted_probability[1])
70
+ print("Neutral:", predicted_probability[2])
71
+
72
+ ##### Prediction Against #####
73
+ sentence = "Trump is the worst."
74
+ inputs = tokenizer(sentence.lower(), return_tensors="pt")
75
+ outputs = model(**inputs)
76
+ predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist()
77
+
78
+ print("Sentence:", sentence)
79
+ print("Prediction:", id2label[np.argmax(predicted_probability)])
80
+ print("Against:", predicted_probability[0])
81
+ print("Favor:", predicted_probability[1])
82
+ print("Neutral:", predicted_probability[2])
83
+
84
+ # please consider citing our paper if you feel this is useful :)
85
+ ```
86
+
87
+ # Reference
88
+
89
+ - [Knowledge Enhance Masked Language Model for Stance Detection](https://2021.naacl.org/program/accepted/), NAACL 2021.
90
+
91
+ # Citation
92
+ ```bibtex
93
+ @inproceedings{kawintiranon2021knowledge,
94
+ title={Knowledge Enhanced Masked Language Model for Stance Detection},
95
+ author={Kawintiranon, Kornraphop and Singh, Lisa},
96
+ booktitle={Proceedings of the 2021 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)},
97
+ year={2021},
98
+ url={#}
99
+ }
100
+ ```