File size: 5,940 Bytes
2c40c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
configuration_prismatic.py

HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
Default configuration specifies `siglip-224px+7b`.
"""

from typing import Any, Dict, List, Optional

from transformers import PretrainedConfig
from transformers.models.auto import CONFIG_MAPPING

# === Utilities for Mapping Prismatic names to HF names ===
# fmt: off
VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
    "clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],

    "clip-vit-l-336px": [336],
    "siglip-vit-so400m-384px": [384],

    "dinoclip-vit-l-336px": [336, 336],
    "dinosiglip-vit-so-224px": [224, 224],
    "dinosiglip-vit-so-384px": [384, 384],
}
VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
    "clip-vit-l": ["vit_large_patch14_clip_224.openai"],
    "clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],

    "dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
    "in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],

    "siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
    "siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],

    "dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
    "dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
    "dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
}
TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
    "clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
    "dinov2-vit-l": [None], "in1k-vit-l": [None],
    "siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
    "dinoclip-vit-l-336px": [None, "quick_gelu"],
    "dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
}

LLM_BACKBONE_TO_HF_PATH = {
    "llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
    "llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
    "llama3.2-1b": "meta-llama/Llama-3.2-1B",


    "vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",

    "mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
    "mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",

    "phi-2-3b": "microsoft/phi-2",
}
LLM_BACKBONE_TO_HF_METACLASS = {
    "llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
    "vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",
    "llama3.2-1b": "llama",

    "mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",

    "phi-2-3b": "phi",
}

VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
# fmt: on


class PrismaticConfig(PretrainedConfig):
    model_type: str = "prismatic"
    is_composition: bool = False

    def __init__(
        self,
        vision_backbone_id: str = "siglip-vit-so400m",
        llm_backbone_id: str = "vicuna-v15-7b",
        arch_specifier: str = "no-align+gelu-mlp",
        use_fused_vision_backbone: Optional[bool] = None,
        image_resize_strategy: str = "letterbox",
        text_config: Optional[Dict[str, Any]] = None,
        llm_max_length: int = 2048,
        pad_token_id: int = 32000,
        pad_to_multiple_of: int = 64,
        output_projector_states: bool = False,
        **kwargs: str,
    ) -> None:
        if vision_backbone_id not in VALID_VISION_BACKBONES:
            raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")

        if llm_backbone_id not in VALID_LLM_BACKBONES:
            raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")

        # Set Prismatic Configuration Fields
        self.vision_backbone_id = vision_backbone_id
        self.llm_backbone_id = llm_backbone_id
        self.arch_specifier = arch_specifier
        self.output_projector_states = output_projector_states

        # [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
        self.use_fused_vision_backbone = (
            use_fused_vision_backbone
            if use_fused_vision_backbone is not None
            else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
        )

        self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
        self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
        self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
        self.image_resize_strategy = image_resize_strategy

        self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
        self.llm_max_length = llm_max_length
        self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of

        # [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
        self.text_config = (
            CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
            if text_config is not None
            else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
        )

        # Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
        super().__init__(pad_token_id=pad_token_id, **kwargs)


class OpenVLAConfig(PrismaticConfig):
    model_type: str = "openvla"

    def __init__(
        self,
        norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
        n_action_bins: int = 256,
        **kwargs: str,
    ) -> None:
        self.norm_stats, self.n_action_bins = norm_stats, n_action_bins

        super().__init__(**kwargs)