""" configuration_prismatic.py HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`. Default configuration specifies `siglip-224px+7b`. """ from typing import Any, Dict, List, Optional from transformers import PretrainedConfig from transformers.models.auto import CONFIG_MAPPING # === Utilities for Mapping Prismatic names to HF names === # fmt: off VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = { "clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224], "clip-vit-l-336px": [336], "siglip-vit-so400m-384px": [384], "dinoclip-vit-l-336px": [336, 336], "dinosiglip-vit-so-224px": [224, 224], "dinosiglip-vit-so-384px": [384, 384], } VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = { "clip-vit-l": ["vit_large_patch14_clip_224.openai"], "clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"], "dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"], "in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"], "siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"], "siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"], "dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"], "dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"], "dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"], } TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = { "clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"], "dinov2-vit-l": [None], "in1k-vit-l": [None], "siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None], "dinoclip-vit-l-336px": [None, "quick_gelu"], "dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None] } LLM_BACKBONE_TO_HF_PATH = { "llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf", "llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf", "llama3.2-1b": "meta-llama/Llama-3.2-1B", "vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5", "mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1", "mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1", "phi-2-3b": "microsoft/phi-2", } LLM_BACKBONE_TO_HF_METACLASS = { "llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama", "vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama", "llama3.2-1b": "llama", "mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral", "phi-2-3b": "phi", } VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys()) VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH) # fmt: on class PrismaticConfig(PretrainedConfig): model_type: str = "prismatic" is_composition: bool = False def __init__( self, vision_backbone_id: str = "siglip-vit-so400m", llm_backbone_id: str = "vicuna-v15-7b", arch_specifier: str = "no-align+gelu-mlp", use_fused_vision_backbone: Optional[bool] = None, image_resize_strategy: str = "letterbox", text_config: Optional[Dict[str, Any]] = None, llm_max_length: int = 2048, pad_token_id: int = 32000, pad_to_multiple_of: int = 64, output_projector_states: bool = False, **kwargs: str, ) -> None: if vision_backbone_id not in VALID_VISION_BACKBONES: raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }") if llm_backbone_id not in VALID_LLM_BACKBONES: raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }") # Set Prismatic Configuration Fields self.vision_backbone_id = vision_backbone_id self.llm_backbone_id = llm_backbone_id self.arch_specifier = arch_specifier self.output_projector_states = output_projector_states # [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing self.use_fused_vision_backbone = ( use_fused_vision_backbone if use_fused_vision_backbone is not None else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"]) ) self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id] self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id] self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id] self.image_resize_strategy = image_resize_strategy self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id] self.llm_max_length = llm_max_length self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of # [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming! self.text_config = ( CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config) if text_config is not None else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]() ) # Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well... super().__init__(pad_token_id=pad_token_id, **kwargs) class OpenVLAConfig(PrismaticConfig): model_type: str = "openvla" def __init__( self, norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None, n_action_bins: int = 256, **kwargs: str, ) -> None: self.norm_stats, self.n_action_bins = norm_stats, n_action_bins super().__init__(**kwargs)