koshimaki commited on
Commit
a706856
·
verified ·
1 Parent(s): 8fcc5f1

Upload config

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +53 -0
  3. configuration_prismatic.py +143 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "arch_specifier": "no-align+fused-gelu-mlp",
3
+ "architectures": [
4
+ "PrismaticForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_prismatic.PrismaticConfig"
8
+ },
9
+ "hf_llm_id": "meta-llama/Llama-3.2-1B",
10
+ "image_resize_strategy": "letterbox",
11
+ "image_sizes": [
12
+ 224,
13
+ 224
14
+ ],
15
+ "llm_backbone_id": "llama3.2-1b",
16
+ "llm_max_length": 2048,
17
+ "model_type": "prismatic",
18
+ "output_projector_states": false,
19
+ "pad_to_multiple_of": 64,
20
+ "pad_token_id": 128256,
21
+ "text_config": {
22
+ "architectures": [
23
+ "LlamaForCausalLM"
24
+ ],
25
+ "bos_token_id": 128000,
26
+ "eos_token_id": 128001,
27
+ "head_dim": 64,
28
+ "hidden_size": 2048,
29
+ "intermediate_size": 8192,
30
+ "max_position_embeddings": 131072,
31
+ "model_type": "llama",
32
+ "num_hidden_layers": 16,
33
+ "num_key_value_heads": 8,
34
+ "pad_token_id": 128256,
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_theta": 500000.0,
37
+ "tie_word_embeddings": true,
38
+ "torch_dtype": "bfloat16",
39
+ "vocab_size": 128320
40
+ },
41
+ "timm_model_ids": [
42
+ "vit_large_patch14_reg4_dinov2.lvd142m",
43
+ "vit_so400m_patch14_siglip_224"
44
+ ],
45
+ "timm_override_act_layers": [
46
+ null,
47
+ null
48
+ ],
49
+ "torch_dtype": "bfloat16",
50
+ "transformers_version": "4.45.1",
51
+ "use_fused_vision_backbone": true,
52
+ "vision_backbone_id": "dinosiglip-vit-so-224px"
53
+ }
configuration_prismatic.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ configuration_prismatic.py
3
+
4
+ HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
5
+ Default configuration specifies `siglip-224px+7b`.
6
+ """
7
+
8
+ from typing import Any, Dict, List, Optional
9
+
10
+ from transformers import PretrainedConfig
11
+ from transformers.models.auto import CONFIG_MAPPING
12
+
13
+ # === Utilities for Mapping Prismatic names to HF names ===
14
+ # fmt: off
15
+ VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
16
+ "clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
17
+
18
+ "clip-vit-l-336px": [336],
19
+ "siglip-vit-so400m-384px": [384],
20
+
21
+ "dinoclip-vit-l-336px": [336, 336],
22
+ "dinosiglip-vit-so-224px": [224, 224],
23
+ "dinosiglip-vit-so-384px": [384, 384],
24
+ }
25
+ VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
26
+ "clip-vit-l": ["vit_large_patch14_clip_224.openai"],
27
+ "clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
28
+
29
+ "dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
30
+ "in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
31
+
32
+ "siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
33
+ "siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
34
+
35
+ "dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
36
+ "dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
37
+ "dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
38
+ }
39
+ TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
40
+ "clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
41
+ "dinov2-vit-l": [None], "in1k-vit-l": [None],
42
+ "siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
43
+ "dinoclip-vit-l-336px": [None, "quick_gelu"],
44
+ "dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
45
+ }
46
+
47
+ LLM_BACKBONE_TO_HF_PATH = {
48
+ "llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
49
+ "llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
50
+ "llama3.2-1b": "meta-llama/Llama-3.2-1B",
51
+
52
+
53
+ "vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
54
+
55
+ "mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
56
+ "mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
57
+
58
+ "phi-2-3b": "microsoft/phi-2",
59
+ }
60
+ LLM_BACKBONE_TO_HF_METACLASS = {
61
+ "llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
62
+ "vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",
63
+ "llama3.2-1b": "llama",
64
+
65
+ "mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
66
+
67
+ "phi-2-3b": "phi",
68
+ }
69
+
70
+ VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
71
+ VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
72
+ # fmt: on
73
+
74
+
75
+ class PrismaticConfig(PretrainedConfig):
76
+ model_type: str = "prismatic"
77
+ is_composition: bool = False
78
+
79
+ def __init__(
80
+ self,
81
+ vision_backbone_id: str = "siglip-vit-so400m",
82
+ llm_backbone_id: str = "vicuna-v15-7b",
83
+ arch_specifier: str = "no-align+gelu-mlp",
84
+ use_fused_vision_backbone: Optional[bool] = None,
85
+ image_resize_strategy: str = "letterbox",
86
+ text_config: Optional[Dict[str, Any]] = None,
87
+ llm_max_length: int = 2048,
88
+ pad_token_id: int = 32000,
89
+ pad_to_multiple_of: int = 64,
90
+ output_projector_states: bool = False,
91
+ **kwargs: str,
92
+ ) -> None:
93
+ if vision_backbone_id not in VALID_VISION_BACKBONES:
94
+ raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
95
+
96
+ if llm_backbone_id not in VALID_LLM_BACKBONES:
97
+ raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
98
+
99
+ # Set Prismatic Configuration Fields
100
+ self.vision_backbone_id = vision_backbone_id
101
+ self.llm_backbone_id = llm_backbone_id
102
+ self.arch_specifier = arch_specifier
103
+ self.output_projector_states = output_projector_states
104
+
105
+ # [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
106
+ self.use_fused_vision_backbone = (
107
+ use_fused_vision_backbone
108
+ if use_fused_vision_backbone is not None
109
+ else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
110
+ )
111
+
112
+ self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
113
+ self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
114
+ self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
115
+ self.image_resize_strategy = image_resize_strategy
116
+
117
+ self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
118
+ self.llm_max_length = llm_max_length
119
+ self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
120
+
121
+ # [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
122
+ self.text_config = (
123
+ CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
124
+ if text_config is not None
125
+ else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
126
+ )
127
+
128
+ # Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
129
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
130
+
131
+
132
+ class OpenVLAConfig(PrismaticConfig):
133
+ model_type: str = "openvla"
134
+
135
+ def __init__(
136
+ self,
137
+ norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
138
+ n_action_bins: int = 256,
139
+ **kwargs: str,
140
+ ) -> None:
141
+ self.norm_stats, self.n_action_bins = norm_stats, n_action_bins
142
+
143
+ super().__init__(**kwargs)