Kais Radwan commited on
Commit
0d83adb
·
1 Parent(s): 7de18e6

Edited readme

Browse files
Files changed (1) hide show
  1. README.md +58 -2637
README.md CHANGED
@@ -1,2610 +1,15 @@
1
  ---
2
  tags:
3
- - mteb
4
- - sentence-similarity
5
- - sentence-transformers
6
- - Sentence Transformers
7
- model-index:
8
- - name: gte-small
9
- results:
10
- - task:
11
- type: Classification
12
- dataset:
13
- type: mteb/amazon_counterfactual
14
- name: MTEB AmazonCounterfactualClassification (en)
15
- config: en
16
- split: test
17
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
18
- metrics:
19
- - type: accuracy
20
- value: 73.22388059701493
21
- - type: ap
22
- value: 36.09895941426988
23
- - type: f1
24
- value: 67.3205651539195
25
- - task:
26
- type: Classification
27
- dataset:
28
- type: mteb/amazon_polarity
29
- name: MTEB AmazonPolarityClassification
30
- config: default
31
- split: test
32
- revision: e2d317d38cd51312af73b3d32a06d1a08b442046
33
- metrics:
34
- - type: accuracy
35
- value: 91.81894999999999
36
- - type: ap
37
- value: 88.5240138417305
38
- - type: f1
39
- value: 91.80367382706962
40
- - task:
41
- type: Classification
42
- dataset:
43
- type: mteb/amazon_reviews_multi
44
- name: MTEB AmazonReviewsClassification (en)
45
- config: en
46
- split: test
47
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
48
- metrics:
49
- - type: accuracy
50
- value: 48.032
51
- - type: f1
52
- value: 47.4490665674719
53
- - task:
54
- type: Retrieval
55
- dataset:
56
- type: arguana
57
- name: MTEB ArguAna
58
- config: default
59
- split: test
60
- revision: None
61
- metrics:
62
- - type: map_at_1
63
- value: 30.725
64
- - type: map_at_10
65
- value: 46.604
66
- - type: map_at_100
67
- value: 47.535
68
- - type: map_at_1000
69
- value: 47.538000000000004
70
- - type: map_at_3
71
- value: 41.833
72
- - type: map_at_5
73
- value: 44.61
74
- - type: mrr_at_1
75
- value: 31.223
76
- - type: mrr_at_10
77
- value: 46.794000000000004
78
- - type: mrr_at_100
79
- value: 47.725
80
- - type: mrr_at_1000
81
- value: 47.727000000000004
82
- - type: mrr_at_3
83
- value: 42.07
84
- - type: mrr_at_5
85
- value: 44.812000000000005
86
- - type: ndcg_at_1
87
- value: 30.725
88
- - type: ndcg_at_10
89
- value: 55.440999999999995
90
- - type: ndcg_at_100
91
- value: 59.134
92
- - type: ndcg_at_1000
93
- value: 59.199
94
- - type: ndcg_at_3
95
- value: 45.599000000000004
96
- - type: ndcg_at_5
97
- value: 50.637
98
- - type: precision_at_1
99
- value: 30.725
100
- - type: precision_at_10
101
- value: 8.364
102
- - type: precision_at_100
103
- value: 0.991
104
- - type: precision_at_1000
105
- value: 0.1
106
- - type: precision_at_3
107
- value: 18.848000000000003
108
- - type: precision_at_5
109
- value: 13.77
110
- - type: recall_at_1
111
- value: 30.725
112
- - type: recall_at_10
113
- value: 83.64200000000001
114
- - type: recall_at_100
115
- value: 99.14699999999999
116
- - type: recall_at_1000
117
- value: 99.644
118
- - type: recall_at_3
119
- value: 56.543
120
- - type: recall_at_5
121
- value: 68.848
122
- - task:
123
- type: Clustering
124
- dataset:
125
- type: mteb/arxiv-clustering-p2p
126
- name: MTEB ArxivClusteringP2P
127
- config: default
128
- split: test
129
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
130
- metrics:
131
- - type: v_measure
132
- value: 47.90178078197678
133
- - task:
134
- type: Clustering
135
- dataset:
136
- type: mteb/arxiv-clustering-s2s
137
- name: MTEB ArxivClusteringS2S
138
- config: default
139
- split: test
140
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
141
- metrics:
142
- - type: v_measure
143
- value: 40.25728393431922
144
- - task:
145
- type: Reranking
146
- dataset:
147
- type: mteb/askubuntudupquestions-reranking
148
- name: MTEB AskUbuntuDupQuestions
149
- config: default
150
- split: test
151
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
152
- metrics:
153
- - type: map
154
- value: 61.720297062897764
155
- - type: mrr
156
- value: 75.24139295607439
157
- - task:
158
- type: STS
159
- dataset:
160
- type: mteb/biosses-sts
161
- name: MTEB BIOSSES
162
- config: default
163
- split: test
164
- revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
165
- metrics:
166
- - type: cos_sim_pearson
167
- value: 89.43527309184616
168
- - type: cos_sim_spearman
169
- value: 88.17128615100206
170
- - type: euclidean_pearson
171
- value: 87.89922623089282
172
- - type: euclidean_spearman
173
- value: 87.96104039655451
174
- - type: manhattan_pearson
175
- value: 87.9818290932077
176
- - type: manhattan_spearman
177
- value: 88.00923426576885
178
- - task:
179
- type: Classification
180
- dataset:
181
- type: mteb/banking77
182
- name: MTEB Banking77Classification
183
- config: default
184
- split: test
185
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
186
- metrics:
187
- - type: accuracy
188
- value: 84.0844155844156
189
- - type: f1
190
- value: 84.01485017302213
191
- - task:
192
- type: Clustering
193
- dataset:
194
- type: mteb/biorxiv-clustering-p2p
195
- name: MTEB BiorxivClusteringP2P
196
- config: default
197
- split: test
198
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
199
- metrics:
200
- - type: v_measure
201
- value: 38.36574769259432
202
- - task:
203
- type: Clustering
204
- dataset:
205
- type: mteb/biorxiv-clustering-s2s
206
- name: MTEB BiorxivClusteringS2S
207
- config: default
208
- split: test
209
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
210
- metrics:
211
- - type: v_measure
212
- value: 35.4857033165287
213
- - task:
214
- type: Retrieval
215
- dataset:
216
- type: BeIR/cqadupstack
217
- name: MTEB CQADupstackAndroidRetrieval
218
- config: default
219
- split: test
220
- revision: None
221
- metrics:
222
- - type: map_at_1
223
- value: 30.261
224
- - type: map_at_10
225
- value: 42.419000000000004
226
- - type: map_at_100
227
- value: 43.927
228
- - type: map_at_1000
229
- value: 44.055
230
- - type: map_at_3
231
- value: 38.597
232
- - type: map_at_5
233
- value: 40.701
234
- - type: mrr_at_1
235
- value: 36.91
236
- - type: mrr_at_10
237
- value: 48.02
238
- - type: mrr_at_100
239
- value: 48.658
240
- - type: mrr_at_1000
241
- value: 48.708
242
- - type: mrr_at_3
243
- value: 44.945
244
- - type: mrr_at_5
245
- value: 46.705000000000005
246
- - type: ndcg_at_1
247
- value: 36.91
248
- - type: ndcg_at_10
249
- value: 49.353
250
- - type: ndcg_at_100
251
- value: 54.456
252
- - type: ndcg_at_1000
253
- value: 56.363
254
- - type: ndcg_at_3
255
- value: 43.483
256
- - type: ndcg_at_5
257
- value: 46.150999999999996
258
- - type: precision_at_1
259
- value: 36.91
260
- - type: precision_at_10
261
- value: 9.700000000000001
262
- - type: precision_at_100
263
- value: 1.557
264
- - type: precision_at_1000
265
- value: 0.202
266
- - type: precision_at_3
267
- value: 21.078
268
- - type: precision_at_5
269
- value: 15.421999999999999
270
- - type: recall_at_1
271
- value: 30.261
272
- - type: recall_at_10
273
- value: 63.242
274
- - type: recall_at_100
275
- value: 84.09100000000001
276
- - type: recall_at_1000
277
- value: 96.143
278
- - type: recall_at_3
279
- value: 46.478
280
- - type: recall_at_5
281
- value: 53.708
282
- - task:
283
- type: Retrieval
284
- dataset:
285
- type: BeIR/cqadupstack
286
- name: MTEB CQADupstackEnglishRetrieval
287
- config: default
288
- split: test
289
- revision: None
290
- metrics:
291
- - type: map_at_1
292
- value: 31.145
293
- - type: map_at_10
294
- value: 40.996
295
- - type: map_at_100
296
- value: 42.266999999999996
297
- - type: map_at_1000
298
- value: 42.397
299
- - type: map_at_3
300
- value: 38.005
301
- - type: map_at_5
302
- value: 39.628
303
- - type: mrr_at_1
304
- value: 38.344
305
- - type: mrr_at_10
306
- value: 46.827000000000005
307
- - type: mrr_at_100
308
- value: 47.446
309
- - type: mrr_at_1000
310
- value: 47.489
311
- - type: mrr_at_3
312
- value: 44.448
313
- - type: mrr_at_5
314
- value: 45.747
315
- - type: ndcg_at_1
316
- value: 38.344
317
- - type: ndcg_at_10
318
- value: 46.733000000000004
319
- - type: ndcg_at_100
320
- value: 51.103
321
- - type: ndcg_at_1000
322
- value: 53.075
323
- - type: ndcg_at_3
324
- value: 42.366
325
- - type: ndcg_at_5
326
- value: 44.242
327
- - type: precision_at_1
328
- value: 38.344
329
- - type: precision_at_10
330
- value: 8.822000000000001
331
- - type: precision_at_100
332
- value: 1.417
333
- - type: precision_at_1000
334
- value: 0.187
335
- - type: precision_at_3
336
- value: 20.403
337
- - type: precision_at_5
338
- value: 14.306
339
- - type: recall_at_1
340
- value: 31.145
341
- - type: recall_at_10
342
- value: 56.909
343
- - type: recall_at_100
344
- value: 75.274
345
- - type: recall_at_1000
346
- value: 87.629
347
- - type: recall_at_3
348
- value: 43.784
349
- - type: recall_at_5
350
- value: 49.338
351
- - task:
352
- type: Retrieval
353
- dataset:
354
- type: BeIR/cqadupstack
355
- name: MTEB CQADupstackGamingRetrieval
356
- config: default
357
- split: test
358
- revision: None
359
- metrics:
360
- - type: map_at_1
361
- value: 38.83
362
- - type: map_at_10
363
- value: 51.553000000000004
364
- - type: map_at_100
365
- value: 52.581
366
- - type: map_at_1000
367
- value: 52.638
368
- - type: map_at_3
369
- value: 48.112
370
- - type: map_at_5
371
- value: 50.095
372
- - type: mrr_at_1
373
- value: 44.513999999999996
374
- - type: mrr_at_10
375
- value: 54.998000000000005
376
- - type: mrr_at_100
377
- value: 55.650999999999996
378
- - type: mrr_at_1000
379
- value: 55.679
380
- - type: mrr_at_3
381
- value: 52.602000000000004
382
- - type: mrr_at_5
383
- value: 53.931
384
- - type: ndcg_at_1
385
- value: 44.513999999999996
386
- - type: ndcg_at_10
387
- value: 57.67400000000001
388
- - type: ndcg_at_100
389
- value: 61.663999999999994
390
- - type: ndcg_at_1000
391
- value: 62.743
392
- - type: ndcg_at_3
393
- value: 51.964
394
- - type: ndcg_at_5
395
- value: 54.773
396
- - type: precision_at_1
397
- value: 44.513999999999996
398
- - type: precision_at_10
399
- value: 9.423
400
- - type: precision_at_100
401
- value: 1.2309999999999999
402
- - type: precision_at_1000
403
- value: 0.13699999999999998
404
- - type: precision_at_3
405
- value: 23.323
406
- - type: precision_at_5
407
- value: 16.163
408
- - type: recall_at_1
409
- value: 38.83
410
- - type: recall_at_10
411
- value: 72.327
412
- - type: recall_at_100
413
- value: 89.519
414
- - type: recall_at_1000
415
- value: 97.041
416
- - type: recall_at_3
417
- value: 57.206
418
- - type: recall_at_5
419
- value: 63.88399999999999
420
- - task:
421
- type: Retrieval
422
- dataset:
423
- type: BeIR/cqadupstack
424
- name: MTEB CQADupstackGisRetrieval
425
- config: default
426
- split: test
427
- revision: None
428
- metrics:
429
- - type: map_at_1
430
- value: 25.484
431
- - type: map_at_10
432
- value: 34.527
433
- - type: map_at_100
434
- value: 35.661
435
- - type: map_at_1000
436
- value: 35.739
437
- - type: map_at_3
438
- value: 32.199
439
- - type: map_at_5
440
- value: 33.632
441
- - type: mrr_at_1
442
- value: 27.458
443
- - type: mrr_at_10
444
- value: 36.543
445
- - type: mrr_at_100
446
- value: 37.482
447
- - type: mrr_at_1000
448
- value: 37.543
449
- - type: mrr_at_3
450
- value: 34.256
451
- - type: mrr_at_5
452
- value: 35.618
453
- - type: ndcg_at_1
454
- value: 27.458
455
- - type: ndcg_at_10
456
- value: 39.396
457
- - type: ndcg_at_100
458
- value: 44.742
459
- - type: ndcg_at_1000
460
- value: 46.708
461
- - type: ndcg_at_3
462
- value: 34.817
463
- - type: ndcg_at_5
464
- value: 37.247
465
- - type: precision_at_1
466
- value: 27.458
467
- - type: precision_at_10
468
- value: 5.976999999999999
469
- - type: precision_at_100
470
- value: 0.907
471
- - type: precision_at_1000
472
- value: 0.11100000000000002
473
- - type: precision_at_3
474
- value: 14.878
475
- - type: precision_at_5
476
- value: 10.35
477
- - type: recall_at_1
478
- value: 25.484
479
- - type: recall_at_10
480
- value: 52.317
481
- - type: recall_at_100
482
- value: 76.701
483
- - type: recall_at_1000
484
- value: 91.408
485
- - type: recall_at_3
486
- value: 40.043
487
- - type: recall_at_5
488
- value: 45.879
489
- - task:
490
- type: Retrieval
491
- dataset:
492
- type: BeIR/cqadupstack
493
- name: MTEB CQADupstackMathematicaRetrieval
494
- config: default
495
- split: test
496
- revision: None
497
- metrics:
498
- - type: map_at_1
499
- value: 16.719
500
- - type: map_at_10
501
- value: 25.269000000000002
502
- - type: map_at_100
503
- value: 26.442
504
- - type: map_at_1000
505
- value: 26.557
506
- - type: map_at_3
507
- value: 22.56
508
- - type: map_at_5
509
- value: 24.082
510
- - type: mrr_at_1
511
- value: 20.896
512
- - type: mrr_at_10
513
- value: 29.982999999999997
514
- - type: mrr_at_100
515
- value: 30.895
516
- - type: mrr_at_1000
517
- value: 30.961
518
- - type: mrr_at_3
519
- value: 27.239
520
- - type: mrr_at_5
521
- value: 28.787000000000003
522
- - type: ndcg_at_1
523
- value: 20.896
524
- - type: ndcg_at_10
525
- value: 30.814000000000004
526
- - type: ndcg_at_100
527
- value: 36.418
528
- - type: ndcg_at_1000
529
- value: 39.182
530
- - type: ndcg_at_3
531
- value: 25.807999999999996
532
- - type: ndcg_at_5
533
- value: 28.143
534
- - type: precision_at_1
535
- value: 20.896
536
- - type: precision_at_10
537
- value: 5.821
538
- - type: precision_at_100
539
- value: 0.991
540
- - type: precision_at_1000
541
- value: 0.136
542
- - type: precision_at_3
543
- value: 12.562000000000001
544
- - type: precision_at_5
545
- value: 9.254
546
- - type: recall_at_1
547
- value: 16.719
548
- - type: recall_at_10
549
- value: 43.155
550
- - type: recall_at_100
551
- value: 67.831
552
- - type: recall_at_1000
553
- value: 87.617
554
- - type: recall_at_3
555
- value: 29.259
556
- - type: recall_at_5
557
- value: 35.260999999999996
558
- - task:
559
- type: Retrieval
560
- dataset:
561
- type: BeIR/cqadupstack
562
- name: MTEB CQADupstackPhysicsRetrieval
563
- config: default
564
- split: test
565
- revision: None
566
- metrics:
567
- - type: map_at_1
568
- value: 29.398999999999997
569
- - type: map_at_10
570
- value: 39.876
571
- - type: map_at_100
572
- value: 41.205999999999996
573
- - type: map_at_1000
574
- value: 41.321999999999996
575
- - type: map_at_3
576
- value: 36.588
577
- - type: map_at_5
578
- value: 38.538
579
- - type: mrr_at_1
580
- value: 35.9
581
- - type: mrr_at_10
582
- value: 45.528
583
- - type: mrr_at_100
584
- value: 46.343
585
- - type: mrr_at_1000
586
- value: 46.388
587
- - type: mrr_at_3
588
- value: 42.862
589
- - type: mrr_at_5
590
- value: 44.440000000000005
591
- - type: ndcg_at_1
592
- value: 35.9
593
- - type: ndcg_at_10
594
- value: 45.987
595
- - type: ndcg_at_100
596
- value: 51.370000000000005
597
- - type: ndcg_at_1000
598
- value: 53.400000000000006
599
- - type: ndcg_at_3
600
- value: 40.841
601
- - type: ndcg_at_5
602
- value: 43.447
603
- - type: precision_at_1
604
- value: 35.9
605
- - type: precision_at_10
606
- value: 8.393
607
- - type: precision_at_100
608
- value: 1.283
609
- - type: precision_at_1000
610
- value: 0.166
611
- - type: precision_at_3
612
- value: 19.538
613
- - type: precision_at_5
614
- value: 13.975000000000001
615
- - type: recall_at_1
616
- value: 29.398999999999997
617
- - type: recall_at_10
618
- value: 58.361
619
- - type: recall_at_100
620
- value: 81.081
621
- - type: recall_at_1000
622
- value: 94.004
623
- - type: recall_at_3
624
- value: 43.657000000000004
625
- - type: recall_at_5
626
- value: 50.519999999999996
627
- - task:
628
- type: Retrieval
629
- dataset:
630
- type: BeIR/cqadupstack
631
- name: MTEB CQADupstackProgrammersRetrieval
632
- config: default
633
- split: test
634
- revision: None
635
- metrics:
636
- - type: map_at_1
637
- value: 21.589
638
- - type: map_at_10
639
- value: 31.608999999999998
640
- - type: map_at_100
641
- value: 33.128
642
- - type: map_at_1000
643
- value: 33.247
644
- - type: map_at_3
645
- value: 28.671999999999997
646
- - type: map_at_5
647
- value: 30.233999999999998
648
- - type: mrr_at_1
649
- value: 26.712000000000003
650
- - type: mrr_at_10
651
- value: 36.713
652
- - type: mrr_at_100
653
- value: 37.713
654
- - type: mrr_at_1000
655
- value: 37.771
656
- - type: mrr_at_3
657
- value: 34.075
658
- - type: mrr_at_5
659
- value: 35.451
660
- - type: ndcg_at_1
661
- value: 26.712000000000003
662
- - type: ndcg_at_10
663
- value: 37.519999999999996
664
- - type: ndcg_at_100
665
- value: 43.946000000000005
666
- - type: ndcg_at_1000
667
- value: 46.297
668
- - type: ndcg_at_3
669
- value: 32.551
670
- - type: ndcg_at_5
671
- value: 34.660999999999994
672
- - type: precision_at_1
673
- value: 26.712000000000003
674
- - type: precision_at_10
675
- value: 7.066
676
- - type: precision_at_100
677
- value: 1.216
678
- - type: precision_at_1000
679
- value: 0.157
680
- - type: precision_at_3
681
- value: 15.906
682
- - type: precision_at_5
683
- value: 11.437999999999999
684
- - type: recall_at_1
685
- value: 21.589
686
- - type: recall_at_10
687
- value: 50.090999999999994
688
- - type: recall_at_100
689
- value: 77.43900000000001
690
- - type: recall_at_1000
691
- value: 93.35900000000001
692
- - type: recall_at_3
693
- value: 36.028999999999996
694
- - type: recall_at_5
695
- value: 41.698
696
- - task:
697
- type: Retrieval
698
- dataset:
699
- type: BeIR/cqadupstack
700
- name: MTEB CQADupstackRetrieval
701
- config: default
702
- split: test
703
- revision: None
704
- metrics:
705
- - type: map_at_1
706
- value: 25.121666666666663
707
- - type: map_at_10
708
- value: 34.46258333333334
709
- - type: map_at_100
710
- value: 35.710499999999996
711
- - type: map_at_1000
712
- value: 35.82691666666666
713
- - type: map_at_3
714
- value: 31.563249999999996
715
- - type: map_at_5
716
- value: 33.189750000000004
717
- - type: mrr_at_1
718
- value: 29.66441666666667
719
- - type: mrr_at_10
720
- value: 38.5455
721
- - type: mrr_at_100
722
- value: 39.39566666666667
723
- - type: mrr_at_1000
724
- value: 39.45325
725
- - type: mrr_at_3
726
- value: 36.003333333333345
727
- - type: mrr_at_5
728
- value: 37.440916666666666
729
- - type: ndcg_at_1
730
- value: 29.66441666666667
731
- - type: ndcg_at_10
732
- value: 39.978416666666675
733
- - type: ndcg_at_100
734
- value: 45.278666666666666
735
- - type: ndcg_at_1000
736
- value: 47.52275
737
- - type: ndcg_at_3
738
- value: 35.00058333333334
739
- - type: ndcg_at_5
740
- value: 37.34908333333333
741
- - type: precision_at_1
742
- value: 29.66441666666667
743
- - type: precision_at_10
744
- value: 7.094500000000001
745
- - type: precision_at_100
746
- value: 1.1523333333333332
747
- - type: precision_at_1000
748
- value: 0.15358333333333332
749
- - type: precision_at_3
750
- value: 16.184166666666663
751
- - type: precision_at_5
752
- value: 11.6005
753
- - type: recall_at_1
754
- value: 25.121666666666663
755
- - type: recall_at_10
756
- value: 52.23975000000001
757
- - type: recall_at_100
758
- value: 75.48408333333333
759
- - type: recall_at_1000
760
- value: 90.95316666666668
761
- - type: recall_at_3
762
- value: 38.38458333333333
763
- - type: recall_at_5
764
- value: 44.39933333333333
765
- - task:
766
- type: Retrieval
767
- dataset:
768
- type: BeIR/cqadupstack
769
- name: MTEB CQADupstackStatsRetrieval
770
- config: default
771
- split: test
772
- revision: None
773
- metrics:
774
- - type: map_at_1
775
- value: 23.569000000000003
776
- - type: map_at_10
777
- value: 30.389
778
- - type: map_at_100
779
- value: 31.396
780
- - type: map_at_1000
781
- value: 31.493
782
- - type: map_at_3
783
- value: 28.276
784
- - type: map_at_5
785
- value: 29.459000000000003
786
- - type: mrr_at_1
787
- value: 26.534000000000002
788
- - type: mrr_at_10
789
- value: 33.217999999999996
790
- - type: mrr_at_100
791
- value: 34.054
792
- - type: mrr_at_1000
793
- value: 34.12
794
- - type: mrr_at_3
795
- value: 31.058000000000003
796
- - type: mrr_at_5
797
- value: 32.330999999999996
798
- - type: ndcg_at_1
799
- value: 26.534000000000002
800
- - type: ndcg_at_10
801
- value: 34.608
802
- - type: ndcg_at_100
803
- value: 39.391999999999996
804
- - type: ndcg_at_1000
805
- value: 41.837999999999994
806
- - type: ndcg_at_3
807
- value: 30.564999999999998
808
- - type: ndcg_at_5
809
- value: 32.509
810
- - type: precision_at_1
811
- value: 26.534000000000002
812
- - type: precision_at_10
813
- value: 5.414
814
- - type: precision_at_100
815
- value: 0.847
816
- - type: precision_at_1000
817
- value: 0.11399999999999999
818
- - type: precision_at_3
819
- value: 12.986
820
- - type: precision_at_5
821
- value: 9.202
822
- - type: recall_at_1
823
- value: 23.569000000000003
824
- - type: recall_at_10
825
- value: 44.896
826
- - type: recall_at_100
827
- value: 66.476
828
- - type: recall_at_1000
829
- value: 84.548
830
- - type: recall_at_3
831
- value: 33.79
832
- - type: recall_at_5
833
- value: 38.512
834
- - task:
835
- type: Retrieval
836
- dataset:
837
- type: BeIR/cqadupstack
838
- name: MTEB CQADupstackTexRetrieval
839
- config: default
840
- split: test
841
- revision: None
842
- metrics:
843
- - type: map_at_1
844
- value: 16.36
845
- - type: map_at_10
846
- value: 23.57
847
- - type: map_at_100
848
- value: 24.698999999999998
849
- - type: map_at_1000
850
- value: 24.834999999999997
851
- - type: map_at_3
852
- value: 21.093
853
- - type: map_at_5
854
- value: 22.418
855
- - type: mrr_at_1
856
- value: 19.718
857
- - type: mrr_at_10
858
- value: 27.139999999999997
859
- - type: mrr_at_100
860
- value: 28.097
861
- - type: mrr_at_1000
862
- value: 28.177999999999997
863
- - type: mrr_at_3
864
- value: 24.805
865
- - type: mrr_at_5
866
- value: 26.121
867
- - type: ndcg_at_1
868
- value: 19.718
869
- - type: ndcg_at_10
870
- value: 28.238999999999997
871
- - type: ndcg_at_100
872
- value: 33.663
873
- - type: ndcg_at_1000
874
- value: 36.763
875
- - type: ndcg_at_3
876
- value: 23.747
877
- - type: ndcg_at_5
878
- value: 25.796000000000003
879
- - type: precision_at_1
880
- value: 19.718
881
- - type: precision_at_10
882
- value: 5.282
883
- - type: precision_at_100
884
- value: 0.9390000000000001
885
- - type: precision_at_1000
886
- value: 0.13899999999999998
887
- - type: precision_at_3
888
- value: 11.264000000000001
889
- - type: precision_at_5
890
- value: 8.341
891
- - type: recall_at_1
892
- value: 16.36
893
- - type: recall_at_10
894
- value: 38.669
895
- - type: recall_at_100
896
- value: 63.184
897
- - type: recall_at_1000
898
- value: 85.33800000000001
899
- - type: recall_at_3
900
- value: 26.214
901
- - type: recall_at_5
902
- value: 31.423000000000002
903
- - task:
904
- type: Retrieval
905
- dataset:
906
- type: BeIR/cqadupstack
907
- name: MTEB CQADupstackUnixRetrieval
908
- config: default
909
- split: test
910
- revision: None
911
- metrics:
912
- - type: map_at_1
913
- value: 25.618999999999996
914
- - type: map_at_10
915
- value: 34.361999999999995
916
- - type: map_at_100
917
- value: 35.534
918
- - type: map_at_1000
919
- value: 35.634
920
- - type: map_at_3
921
- value: 31.402
922
- - type: map_at_5
923
- value: 32.815
924
- - type: mrr_at_1
925
- value: 30.037000000000003
926
- - type: mrr_at_10
927
- value: 38.284
928
- - type: mrr_at_100
929
- value: 39.141999999999996
930
- - type: mrr_at_1000
931
- value: 39.2
932
- - type: mrr_at_3
933
- value: 35.603
934
- - type: mrr_at_5
935
- value: 36.867
936
- - type: ndcg_at_1
937
- value: 30.037000000000003
938
- - type: ndcg_at_10
939
- value: 39.87
940
- - type: ndcg_at_100
941
- value: 45.243
942
- - type: ndcg_at_1000
943
- value: 47.507
944
- - type: ndcg_at_3
945
- value: 34.371
946
- - type: ndcg_at_5
947
- value: 36.521
948
- - type: precision_at_1
949
- value: 30.037000000000003
950
- - type: precision_at_10
951
- value: 6.819
952
- - type: precision_at_100
953
- value: 1.0699999999999998
954
- - type: precision_at_1000
955
- value: 0.13699999999999998
956
- - type: precision_at_3
957
- value: 15.392
958
- - type: precision_at_5
959
- value: 10.821
960
- - type: recall_at_1
961
- value: 25.618999999999996
962
- - type: recall_at_10
963
- value: 52.869
964
- - type: recall_at_100
965
- value: 76.395
966
- - type: recall_at_1000
967
- value: 92.19500000000001
968
- - type: recall_at_3
969
- value: 37.943
970
- - type: recall_at_5
971
- value: 43.342999999999996
972
- - task:
973
- type: Retrieval
974
- dataset:
975
- type: BeIR/cqadupstack
976
- name: MTEB CQADupstackWebmastersRetrieval
977
- config: default
978
- split: test
979
- revision: None
980
- metrics:
981
- - type: map_at_1
982
- value: 23.283
983
- - type: map_at_10
984
- value: 32.155
985
- - type: map_at_100
986
- value: 33.724
987
- - type: map_at_1000
988
- value: 33.939
989
- - type: map_at_3
990
- value: 29.018
991
- - type: map_at_5
992
- value: 30.864000000000004
993
- - type: mrr_at_1
994
- value: 28.063
995
- - type: mrr_at_10
996
- value: 36.632
997
- - type: mrr_at_100
998
- value: 37.606
999
- - type: mrr_at_1000
1000
- value: 37.671
1001
- - type: mrr_at_3
1002
- value: 33.992
1003
- - type: mrr_at_5
1004
- value: 35.613
1005
- - type: ndcg_at_1
1006
- value: 28.063
1007
- - type: ndcg_at_10
1008
- value: 38.024
1009
- - type: ndcg_at_100
1010
- value: 44.292
1011
- - type: ndcg_at_1000
1012
- value: 46.818
1013
- - type: ndcg_at_3
1014
- value: 32.965
1015
- - type: ndcg_at_5
1016
- value: 35.562
1017
- - type: precision_at_1
1018
- value: 28.063
1019
- - type: precision_at_10
1020
- value: 7.352
1021
- - type: precision_at_100
1022
- value: 1.514
1023
- - type: precision_at_1000
1024
- value: 0.23800000000000002
1025
- - type: precision_at_3
1026
- value: 15.481
1027
- - type: precision_at_5
1028
- value: 11.542
1029
- - type: recall_at_1
1030
- value: 23.283
1031
- - type: recall_at_10
1032
- value: 49.756
1033
- - type: recall_at_100
1034
- value: 78.05
1035
- - type: recall_at_1000
1036
- value: 93.854
1037
- - type: recall_at_3
1038
- value: 35.408
1039
- - type: recall_at_5
1040
- value: 42.187000000000005
1041
- - task:
1042
- type: Retrieval
1043
- dataset:
1044
- type: BeIR/cqadupstack
1045
- name: MTEB CQADupstackWordpressRetrieval
1046
- config: default
1047
- split: test
1048
- revision: None
1049
- metrics:
1050
- - type: map_at_1
1051
- value: 19.201999999999998
1052
- - type: map_at_10
1053
- value: 26.826
1054
- - type: map_at_100
1055
- value: 27.961000000000002
1056
- - type: map_at_1000
1057
- value: 28.066999999999997
1058
- - type: map_at_3
1059
- value: 24.237000000000002
1060
- - type: map_at_5
1061
- value: 25.811
1062
- - type: mrr_at_1
1063
- value: 20.887
1064
- - type: mrr_at_10
1065
- value: 28.660000000000004
1066
- - type: mrr_at_100
1067
- value: 29.660999999999998
1068
- - type: mrr_at_1000
1069
- value: 29.731
1070
- - type: mrr_at_3
1071
- value: 26.155
1072
- - type: mrr_at_5
1073
- value: 27.68
1074
- - type: ndcg_at_1
1075
- value: 20.887
1076
- - type: ndcg_at_10
1077
- value: 31.523
1078
- - type: ndcg_at_100
1079
- value: 37.055
1080
- - type: ndcg_at_1000
1081
- value: 39.579
1082
- - type: ndcg_at_3
1083
- value: 26.529000000000003
1084
- - type: ndcg_at_5
1085
- value: 29.137
1086
- - type: precision_at_1
1087
- value: 20.887
1088
- - type: precision_at_10
1089
- value: 5.065
1090
- - type: precision_at_100
1091
- value: 0.856
1092
- - type: precision_at_1000
1093
- value: 0.11900000000000001
1094
- - type: precision_at_3
1095
- value: 11.399
1096
- - type: precision_at_5
1097
- value: 8.392
1098
- - type: recall_at_1
1099
- value: 19.201999999999998
1100
- - type: recall_at_10
1101
- value: 44.285000000000004
1102
- - type: recall_at_100
1103
- value: 69.768
1104
- - type: recall_at_1000
1105
- value: 88.302
1106
- - type: recall_at_3
1107
- value: 30.804
1108
- - type: recall_at_5
1109
- value: 37.039
1110
- - task:
1111
- type: Retrieval
1112
- dataset:
1113
- type: climate-fever
1114
- name: MTEB ClimateFEVER
1115
- config: default
1116
- split: test
1117
- revision: None
1118
- metrics:
1119
- - type: map_at_1
1120
- value: 11.244
1121
- - type: map_at_10
1122
- value: 18.956
1123
- - type: map_at_100
1124
- value: 20.674
1125
- - type: map_at_1000
1126
- value: 20.863
1127
- - type: map_at_3
1128
- value: 15.923000000000002
1129
- - type: map_at_5
1130
- value: 17.518
1131
- - type: mrr_at_1
1132
- value: 25.080999999999996
1133
- - type: mrr_at_10
1134
- value: 35.94
1135
- - type: mrr_at_100
1136
- value: 36.969
1137
- - type: mrr_at_1000
1138
- value: 37.013
1139
- - type: mrr_at_3
1140
- value: 32.617000000000004
1141
- - type: mrr_at_5
1142
- value: 34.682
1143
- - type: ndcg_at_1
1144
- value: 25.080999999999996
1145
- - type: ndcg_at_10
1146
- value: 26.539
1147
- - type: ndcg_at_100
1148
- value: 33.601
1149
- - type: ndcg_at_1000
1150
- value: 37.203
1151
- - type: ndcg_at_3
1152
- value: 21.695999999999998
1153
- - type: ndcg_at_5
1154
- value: 23.567
1155
- - type: precision_at_1
1156
- value: 25.080999999999996
1157
- - type: precision_at_10
1158
- value: 8.143
1159
- - type: precision_at_100
1160
- value: 1.5650000000000002
1161
- - type: precision_at_1000
1162
- value: 0.22300000000000003
1163
- - type: precision_at_3
1164
- value: 15.983
1165
- - type: precision_at_5
1166
- value: 12.417
1167
- - type: recall_at_1
1168
- value: 11.244
1169
- - type: recall_at_10
1170
- value: 31.457
1171
- - type: recall_at_100
1172
- value: 55.92
1173
- - type: recall_at_1000
1174
- value: 76.372
1175
- - type: recall_at_3
1176
- value: 19.784
1177
- - type: recall_at_5
1178
- value: 24.857000000000003
1179
- - task:
1180
- type: Retrieval
1181
- dataset:
1182
- type: dbpedia-entity
1183
- name: MTEB DBPedia
1184
- config: default
1185
- split: test
1186
- revision: None
1187
- metrics:
1188
- - type: map_at_1
1189
- value: 8.595
1190
- - type: map_at_10
1191
- value: 18.75
1192
- - type: map_at_100
1193
- value: 26.354
1194
- - type: map_at_1000
1195
- value: 27.912
1196
- - type: map_at_3
1197
- value: 13.794
1198
- - type: map_at_5
1199
- value: 16.021
1200
- - type: mrr_at_1
1201
- value: 65.75
1202
- - type: mrr_at_10
1203
- value: 73.837
1204
- - type: mrr_at_100
1205
- value: 74.22800000000001
1206
- - type: mrr_at_1000
1207
- value: 74.234
1208
- - type: mrr_at_3
1209
- value: 72.5
1210
- - type: mrr_at_5
1211
- value: 73.387
1212
- - type: ndcg_at_1
1213
- value: 52.625
1214
- - type: ndcg_at_10
1215
- value: 39.101
1216
- - type: ndcg_at_100
1217
- value: 43.836000000000006
1218
- - type: ndcg_at_1000
1219
- value: 51.086
1220
- - type: ndcg_at_3
1221
- value: 44.229
1222
- - type: ndcg_at_5
1223
- value: 41.555
1224
- - type: precision_at_1
1225
- value: 65.75
1226
- - type: precision_at_10
1227
- value: 30.45
1228
- - type: precision_at_100
1229
- value: 9.81
1230
- - type: precision_at_1000
1231
- value: 2.045
1232
- - type: precision_at_3
1233
- value: 48.667
1234
- - type: precision_at_5
1235
- value: 40.8
1236
- - type: recall_at_1
1237
- value: 8.595
1238
- - type: recall_at_10
1239
- value: 24.201
1240
- - type: recall_at_100
1241
- value: 50.096
1242
- - type: recall_at_1000
1243
- value: 72.677
1244
- - type: recall_at_3
1245
- value: 15.212
1246
- - type: recall_at_5
1247
- value: 18.745
1248
- - task:
1249
- type: Classification
1250
- dataset:
1251
- type: mteb/emotion
1252
- name: MTEB EmotionClassification
1253
- config: default
1254
- split: test
1255
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1256
- metrics:
1257
- - type: accuracy
1258
- value: 46.565
1259
- - type: f1
1260
- value: 41.49914329345582
1261
- - task:
1262
- type: Retrieval
1263
- dataset:
1264
- type: fever
1265
- name: MTEB FEVER
1266
- config: default
1267
- split: test
1268
- revision: None
1269
- metrics:
1270
- - type: map_at_1
1271
- value: 66.60000000000001
1272
- - type: map_at_10
1273
- value: 76.838
1274
- - type: map_at_100
1275
- value: 77.076
1276
- - type: map_at_1000
1277
- value: 77.09
1278
- - type: map_at_3
1279
- value: 75.545
1280
- - type: map_at_5
1281
- value: 76.39
1282
- - type: mrr_at_1
1283
- value: 71.707
1284
- - type: mrr_at_10
1285
- value: 81.514
1286
- - type: mrr_at_100
1287
- value: 81.64099999999999
1288
- - type: mrr_at_1000
1289
- value: 81.645
1290
- - type: mrr_at_3
1291
- value: 80.428
1292
- - type: mrr_at_5
1293
- value: 81.159
1294
- - type: ndcg_at_1
1295
- value: 71.707
1296
- - type: ndcg_at_10
1297
- value: 81.545
1298
- - type: ndcg_at_100
1299
- value: 82.477
1300
- - type: ndcg_at_1000
1301
- value: 82.73899999999999
1302
- - type: ndcg_at_3
1303
- value: 79.292
1304
- - type: ndcg_at_5
1305
- value: 80.599
1306
- - type: precision_at_1
1307
- value: 71.707
1308
- - type: precision_at_10
1309
- value: 10.035
1310
- - type: precision_at_100
1311
- value: 1.068
1312
- - type: precision_at_1000
1313
- value: 0.11100000000000002
1314
- - type: precision_at_3
1315
- value: 30.918
1316
- - type: precision_at_5
1317
- value: 19.328
1318
- - type: recall_at_1
1319
- value: 66.60000000000001
1320
- - type: recall_at_10
1321
- value: 91.353
1322
- - type: recall_at_100
1323
- value: 95.21
1324
- - type: recall_at_1000
1325
- value: 96.89999999999999
1326
- - type: recall_at_3
1327
- value: 85.188
1328
- - type: recall_at_5
1329
- value: 88.52
1330
- - task:
1331
- type: Retrieval
1332
- dataset:
1333
- type: fiqa
1334
- name: MTEB FiQA2018
1335
- config: default
1336
- split: test
1337
- revision: None
1338
- metrics:
1339
- - type: map_at_1
1340
- value: 19.338
1341
- - type: map_at_10
1342
- value: 31.752000000000002
1343
- - type: map_at_100
1344
- value: 33.516
1345
- - type: map_at_1000
1346
- value: 33.694
1347
- - type: map_at_3
1348
- value: 27.716
1349
- - type: map_at_5
1350
- value: 29.67
1351
- - type: mrr_at_1
1352
- value: 38.117000000000004
1353
- - type: mrr_at_10
1354
- value: 47.323
1355
- - type: mrr_at_100
1356
- value: 48.13
1357
- - type: mrr_at_1000
1358
- value: 48.161
1359
- - type: mrr_at_3
1360
- value: 45.062000000000005
1361
- - type: mrr_at_5
1362
- value: 46.358
1363
- - type: ndcg_at_1
1364
- value: 38.117000000000004
1365
- - type: ndcg_at_10
1366
- value: 39.353
1367
- - type: ndcg_at_100
1368
- value: 46.044000000000004
1369
- - type: ndcg_at_1000
1370
- value: 49.083
1371
- - type: ndcg_at_3
1372
- value: 35.891
1373
- - type: ndcg_at_5
1374
- value: 36.661
1375
- - type: precision_at_1
1376
- value: 38.117000000000004
1377
- - type: precision_at_10
1378
- value: 11.187999999999999
1379
- - type: precision_at_100
1380
- value: 1.802
1381
- - type: precision_at_1000
1382
- value: 0.234
1383
- - type: precision_at_3
1384
- value: 24.126
1385
- - type: precision_at_5
1386
- value: 17.562
1387
- - type: recall_at_1
1388
- value: 19.338
1389
- - type: recall_at_10
1390
- value: 45.735
1391
- - type: recall_at_100
1392
- value: 71.281
1393
- - type: recall_at_1000
1394
- value: 89.537
1395
- - type: recall_at_3
1396
- value: 32.525
1397
- - type: recall_at_5
1398
- value: 37.671
1399
- - task:
1400
- type: Retrieval
1401
- dataset:
1402
- type: hotpotqa
1403
- name: MTEB HotpotQA
1404
- config: default
1405
- split: test
1406
- revision: None
1407
- metrics:
1408
- - type: map_at_1
1409
- value: 36.995
1410
- - type: map_at_10
1411
- value: 55.032000000000004
1412
- - type: map_at_100
1413
- value: 55.86
1414
- - type: map_at_1000
1415
- value: 55.932
1416
- - type: map_at_3
1417
- value: 52.125
1418
- - type: map_at_5
1419
- value: 53.884
1420
- - type: mrr_at_1
1421
- value: 73.991
1422
- - type: mrr_at_10
1423
- value: 80.096
1424
- - type: mrr_at_100
1425
- value: 80.32000000000001
1426
- - type: mrr_at_1000
1427
- value: 80.331
1428
- - type: mrr_at_3
1429
- value: 79.037
1430
- - type: mrr_at_5
1431
- value: 79.719
1432
- - type: ndcg_at_1
1433
- value: 73.991
1434
- - type: ndcg_at_10
1435
- value: 63.786
1436
- - type: ndcg_at_100
1437
- value: 66.78
1438
- - type: ndcg_at_1000
1439
- value: 68.255
1440
- - type: ndcg_at_3
1441
- value: 59.501000000000005
1442
- - type: ndcg_at_5
1443
- value: 61.82299999999999
1444
- - type: precision_at_1
1445
- value: 73.991
1446
- - type: precision_at_10
1447
- value: 13.157
1448
- - type: precision_at_100
1449
- value: 1.552
1450
- - type: precision_at_1000
1451
- value: 0.17500000000000002
1452
- - type: precision_at_3
1453
- value: 37.519999999999996
1454
- - type: precision_at_5
1455
- value: 24.351
1456
- - type: recall_at_1
1457
- value: 36.995
1458
- - type: recall_at_10
1459
- value: 65.78699999999999
1460
- - type: recall_at_100
1461
- value: 77.583
1462
- - type: recall_at_1000
1463
- value: 87.421
1464
- - type: recall_at_3
1465
- value: 56.279999999999994
1466
- - type: recall_at_5
1467
- value: 60.878
1468
- - task:
1469
- type: Classification
1470
- dataset:
1471
- type: mteb/imdb
1472
- name: MTEB ImdbClassification
1473
- config: default
1474
- split: test
1475
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1476
- metrics:
1477
- - type: accuracy
1478
- value: 86.80239999999999
1479
- - type: ap
1480
- value: 81.97305141128378
1481
- - type: f1
1482
- value: 86.76976305549273
1483
- - task:
1484
- type: Retrieval
1485
- dataset:
1486
- type: msmarco
1487
- name: MTEB MSMARCO
1488
- config: default
1489
- split: dev
1490
- revision: None
1491
- metrics:
1492
- - type: map_at_1
1493
- value: 21.166
1494
- - type: map_at_10
1495
- value: 33.396
1496
- - type: map_at_100
1497
- value: 34.588
1498
- - type: map_at_1000
1499
- value: 34.637
1500
- - type: map_at_3
1501
- value: 29.509999999999998
1502
- - type: map_at_5
1503
- value: 31.719
1504
- - type: mrr_at_1
1505
- value: 21.762
1506
- - type: mrr_at_10
1507
- value: 33.969
1508
- - type: mrr_at_100
1509
- value: 35.099000000000004
1510
- - type: mrr_at_1000
1511
- value: 35.141
1512
- - type: mrr_at_3
1513
- value: 30.148000000000003
1514
- - type: mrr_at_5
1515
- value: 32.324000000000005
1516
- - type: ndcg_at_1
1517
- value: 21.776999999999997
1518
- - type: ndcg_at_10
1519
- value: 40.306999999999995
1520
- - type: ndcg_at_100
1521
- value: 46.068
1522
- - type: ndcg_at_1000
1523
- value: 47.3
1524
- - type: ndcg_at_3
1525
- value: 32.416
1526
- - type: ndcg_at_5
1527
- value: 36.345
1528
- - type: precision_at_1
1529
- value: 21.776999999999997
1530
- - type: precision_at_10
1531
- value: 6.433
1532
- - type: precision_at_100
1533
- value: 0.932
1534
- - type: precision_at_1000
1535
- value: 0.104
1536
- - type: precision_at_3
1537
- value: 13.897
1538
- - type: precision_at_5
1539
- value: 10.324
1540
- - type: recall_at_1
1541
- value: 21.166
1542
- - type: recall_at_10
1543
- value: 61.587
1544
- - type: recall_at_100
1545
- value: 88.251
1546
- - type: recall_at_1000
1547
- value: 97.727
1548
- - type: recall_at_3
1549
- value: 40.196
1550
- - type: recall_at_5
1551
- value: 49.611
1552
- - task:
1553
- type: Classification
1554
- dataset:
1555
- type: mteb/mtop_domain
1556
- name: MTEB MTOPDomainClassification (en)
1557
- config: en
1558
- split: test
1559
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1560
- metrics:
1561
- - type: accuracy
1562
- value: 93.04605563155496
1563
- - type: f1
1564
- value: 92.78007303978372
1565
- - task:
1566
- type: Classification
1567
- dataset:
1568
- type: mteb/mtop_intent
1569
- name: MTEB MTOPIntentClassification (en)
1570
- config: en
1571
- split: test
1572
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1573
- metrics:
1574
- - type: accuracy
1575
- value: 69.65116279069767
1576
- - type: f1
1577
- value: 52.75775172527262
1578
- - task:
1579
- type: Classification
1580
- dataset:
1581
- type: mteb/amazon_massive_intent
1582
- name: MTEB MassiveIntentClassification (en)
1583
- config: en
1584
- split: test
1585
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1586
- metrics:
1587
- - type: accuracy
1588
- value: 70.34633490248822
1589
- - type: f1
1590
- value: 68.15345065392562
1591
- - task:
1592
- type: Classification
1593
- dataset:
1594
- type: mteb/amazon_massive_scenario
1595
- name: MTEB MassiveScenarioClassification (en)
1596
- config: en
1597
- split: test
1598
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
1599
- metrics:
1600
- - type: accuracy
1601
- value: 75.63887020847343
1602
- - type: f1
1603
- value: 76.08074680233685
1604
- - task:
1605
- type: Clustering
1606
- dataset:
1607
- type: mteb/medrxiv-clustering-p2p
1608
- name: MTEB MedrxivClusteringP2P
1609
- config: default
1610
- split: test
1611
- revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1612
- metrics:
1613
- - type: v_measure
1614
- value: 33.77933406071333
1615
- - task:
1616
- type: Clustering
1617
- dataset:
1618
- type: mteb/medrxiv-clustering-s2s
1619
- name: MTEB MedrxivClusteringS2S
1620
- config: default
1621
- split: test
1622
- revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1623
- metrics:
1624
- - type: v_measure
1625
- value: 32.06504927238196
1626
- - task:
1627
- type: Reranking
1628
- dataset:
1629
- type: mteb/mind_small
1630
- name: MTEB MindSmallReranking
1631
- config: default
1632
- split: test
1633
- revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1634
- metrics:
1635
- - type: map
1636
- value: 32.20682480490871
1637
- - type: mrr
1638
- value: 33.41462721527003
1639
- - task:
1640
- type: Retrieval
1641
- dataset:
1642
- type: nfcorpus
1643
- name: MTEB NFCorpus
1644
- config: default
1645
- split: test
1646
- revision: None
1647
- metrics:
1648
- - type: map_at_1
1649
- value: 5.548
1650
- - type: map_at_10
1651
- value: 13.086999999999998
1652
- - type: map_at_100
1653
- value: 16.698
1654
- - type: map_at_1000
1655
- value: 18.151999999999997
1656
- - type: map_at_3
1657
- value: 9.576
1658
- - type: map_at_5
1659
- value: 11.175
1660
- - type: mrr_at_1
1661
- value: 44.272
1662
- - type: mrr_at_10
1663
- value: 53.635999999999996
1664
- - type: mrr_at_100
1665
- value: 54.228
1666
- - type: mrr_at_1000
1667
- value: 54.26499999999999
1668
- - type: mrr_at_3
1669
- value: 51.754
1670
- - type: mrr_at_5
1671
- value: 53.086
1672
- - type: ndcg_at_1
1673
- value: 42.724000000000004
1674
- - type: ndcg_at_10
1675
- value: 34.769
1676
- - type: ndcg_at_100
1677
- value: 32.283
1678
- - type: ndcg_at_1000
1679
- value: 40.843
1680
- - type: ndcg_at_3
1681
- value: 39.852
1682
- - type: ndcg_at_5
1683
- value: 37.858999999999995
1684
- - type: precision_at_1
1685
- value: 44.272
1686
- - type: precision_at_10
1687
- value: 26.068
1688
- - type: precision_at_100
1689
- value: 8.328000000000001
1690
- - type: precision_at_1000
1691
- value: 2.1
1692
- - type: precision_at_3
1693
- value: 37.874
1694
- - type: precision_at_5
1695
- value: 33.065
1696
- - type: recall_at_1
1697
- value: 5.548
1698
- - type: recall_at_10
1699
- value: 16.936999999999998
1700
- - type: recall_at_100
1701
- value: 33.72
1702
- - type: recall_at_1000
1703
- value: 64.348
1704
- - type: recall_at_3
1705
- value: 10.764999999999999
1706
- - type: recall_at_5
1707
- value: 13.361
1708
- - task:
1709
- type: Retrieval
1710
- dataset:
1711
- type: nq
1712
- name: MTEB NQ
1713
- config: default
1714
- split: test
1715
- revision: None
1716
- metrics:
1717
- - type: map_at_1
1718
- value: 28.008
1719
- - type: map_at_10
1720
- value: 42.675000000000004
1721
- - type: map_at_100
1722
- value: 43.85
1723
- - type: map_at_1000
1724
- value: 43.884
1725
- - type: map_at_3
1726
- value: 38.286
1727
- - type: map_at_5
1728
- value: 40.78
1729
- - type: mrr_at_1
1730
- value: 31.518
1731
- - type: mrr_at_10
1732
- value: 45.015
1733
- - type: mrr_at_100
1734
- value: 45.924
1735
- - type: mrr_at_1000
1736
- value: 45.946999999999996
1737
- - type: mrr_at_3
1738
- value: 41.348
1739
- - type: mrr_at_5
1740
- value: 43.428
1741
- - type: ndcg_at_1
1742
- value: 31.489
1743
- - type: ndcg_at_10
1744
- value: 50.285999999999994
1745
- - type: ndcg_at_100
1746
- value: 55.291999999999994
1747
- - type: ndcg_at_1000
1748
- value: 56.05
1749
- - type: ndcg_at_3
1750
- value: 41.976
1751
- - type: ndcg_at_5
1752
- value: 46.103
1753
- - type: precision_at_1
1754
- value: 31.489
1755
- - type: precision_at_10
1756
- value: 8.456
1757
- - type: precision_at_100
1758
- value: 1.125
1759
- - type: precision_at_1000
1760
- value: 0.12
1761
- - type: precision_at_3
1762
- value: 19.09
1763
- - type: precision_at_5
1764
- value: 13.841000000000001
1765
- - type: recall_at_1
1766
- value: 28.008
1767
- - type: recall_at_10
1768
- value: 71.21499999999999
1769
- - type: recall_at_100
1770
- value: 92.99
1771
- - type: recall_at_1000
1772
- value: 98.578
1773
- - type: recall_at_3
1774
- value: 49.604
1775
- - type: recall_at_5
1776
- value: 59.094
1777
- - task:
1778
- type: Retrieval
1779
- dataset:
1780
- type: quora
1781
- name: MTEB QuoraRetrieval
1782
- config: default
1783
- split: test
1784
- revision: None
1785
- metrics:
1786
- - type: map_at_1
1787
- value: 70.351
1788
- - type: map_at_10
1789
- value: 84.163
1790
- - type: map_at_100
1791
- value: 84.785
1792
- - type: map_at_1000
1793
- value: 84.801
1794
- - type: map_at_3
1795
- value: 81.16
1796
- - type: map_at_5
1797
- value: 83.031
1798
- - type: mrr_at_1
1799
- value: 80.96
1800
- - type: mrr_at_10
1801
- value: 87.241
1802
- - type: mrr_at_100
1803
- value: 87.346
1804
- - type: mrr_at_1000
1805
- value: 87.347
1806
- - type: mrr_at_3
1807
- value: 86.25699999999999
1808
- - type: mrr_at_5
1809
- value: 86.907
1810
- - type: ndcg_at_1
1811
- value: 80.97
1812
- - type: ndcg_at_10
1813
- value: 88.017
1814
- - type: ndcg_at_100
1815
- value: 89.241
1816
- - type: ndcg_at_1000
1817
- value: 89.34299999999999
1818
- - type: ndcg_at_3
1819
- value: 85.053
1820
- - type: ndcg_at_5
1821
- value: 86.663
1822
- - type: precision_at_1
1823
- value: 80.97
1824
- - type: precision_at_10
1825
- value: 13.358
1826
- - type: precision_at_100
1827
- value: 1.525
1828
- - type: precision_at_1000
1829
- value: 0.157
1830
- - type: precision_at_3
1831
- value: 37.143
1832
- - type: precision_at_5
1833
- value: 24.451999999999998
1834
- - type: recall_at_1
1835
- value: 70.351
1836
- - type: recall_at_10
1837
- value: 95.39800000000001
1838
- - type: recall_at_100
1839
- value: 99.55199999999999
1840
- - type: recall_at_1000
1841
- value: 99.978
1842
- - type: recall_at_3
1843
- value: 86.913
1844
- - type: recall_at_5
1845
- value: 91.448
1846
- - task:
1847
- type: Clustering
1848
- dataset:
1849
- type: mteb/reddit-clustering
1850
- name: MTEB RedditClustering
1851
- config: default
1852
- split: test
1853
- revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1854
- metrics:
1855
- - type: v_measure
1856
- value: 55.62406719814139
1857
- - task:
1858
- type: Clustering
1859
- dataset:
1860
- type: mteb/reddit-clustering-p2p
1861
- name: MTEB RedditClusteringP2P
1862
- config: default
1863
- split: test
1864
- revision: 282350215ef01743dc01b456c7f5241fa8937f16
1865
- metrics:
1866
- - type: v_measure
1867
- value: 61.386700035141736
1868
- - task:
1869
- type: Retrieval
1870
- dataset:
1871
- type: scidocs
1872
- name: MTEB SCIDOCS
1873
- config: default
1874
- split: test
1875
- revision: None
1876
- metrics:
1877
- - type: map_at_1
1878
- value: 4.618
1879
- - type: map_at_10
1880
- value: 12.920000000000002
1881
- - type: map_at_100
1882
- value: 15.304
1883
- - type: map_at_1000
1884
- value: 15.656999999999998
1885
- - type: map_at_3
1886
- value: 9.187
1887
- - type: map_at_5
1888
- value: 10.937
1889
- - type: mrr_at_1
1890
- value: 22.8
1891
- - type: mrr_at_10
1892
- value: 35.13
1893
- - type: mrr_at_100
1894
- value: 36.239
1895
- - type: mrr_at_1000
1896
- value: 36.291000000000004
1897
- - type: mrr_at_3
1898
- value: 31.917
1899
- - type: mrr_at_5
1900
- value: 33.787
1901
- - type: ndcg_at_1
1902
- value: 22.8
1903
- - type: ndcg_at_10
1904
- value: 21.382
1905
- - type: ndcg_at_100
1906
- value: 30.257
1907
- - type: ndcg_at_1000
1908
- value: 36.001
1909
- - type: ndcg_at_3
1910
- value: 20.43
1911
- - type: ndcg_at_5
1912
- value: 17.622
1913
- - type: precision_at_1
1914
- value: 22.8
1915
- - type: precision_at_10
1916
- value: 11.26
1917
- - type: precision_at_100
1918
- value: 2.405
1919
- - type: precision_at_1000
1920
- value: 0.377
1921
- - type: precision_at_3
1922
- value: 19.633
1923
- - type: precision_at_5
1924
- value: 15.68
1925
- - type: recall_at_1
1926
- value: 4.618
1927
- - type: recall_at_10
1928
- value: 22.811999999999998
1929
- - type: recall_at_100
1930
- value: 48.787000000000006
1931
- - type: recall_at_1000
1932
- value: 76.63799999999999
1933
- - type: recall_at_3
1934
- value: 11.952
1935
- - type: recall_at_5
1936
- value: 15.892000000000001
1937
- - task:
1938
- type: STS
1939
- dataset:
1940
- type: mteb/sickr-sts
1941
- name: MTEB SICK-R
1942
- config: default
1943
- split: test
1944
- revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1945
- metrics:
1946
- - type: cos_sim_pearson
1947
- value: 84.01529458252244
1948
- - type: cos_sim_spearman
1949
- value: 77.92985224770254
1950
- - type: euclidean_pearson
1951
- value: 81.04251429422487
1952
- - type: euclidean_spearman
1953
- value: 77.92838490549133
1954
- - type: manhattan_pearson
1955
- value: 80.95892251458979
1956
- - type: manhattan_spearman
1957
- value: 77.81028089705941
1958
- - task:
1959
- type: STS
1960
- dataset:
1961
- type: mteb/sts12-sts
1962
- name: MTEB STS12
1963
- config: default
1964
- split: test
1965
- revision: a0d554a64d88156834ff5ae9920b964011b16384
1966
- metrics:
1967
- - type: cos_sim_pearson
1968
- value: 83.97885282534388
1969
- - type: cos_sim_spearman
1970
- value: 75.1221970851712
1971
- - type: euclidean_pearson
1972
- value: 80.34455956720097
1973
- - type: euclidean_spearman
1974
- value: 74.5894274239938
1975
- - type: manhattan_pearson
1976
- value: 80.38999766325465
1977
- - type: manhattan_spearman
1978
- value: 74.68524557166975
1979
- - task:
1980
- type: STS
1981
- dataset:
1982
- type: mteb/sts13-sts
1983
- name: MTEB STS13
1984
- config: default
1985
- split: test
1986
- revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1987
- metrics:
1988
- - type: cos_sim_pearson
1989
- value: 82.95746064915672
1990
- - type: cos_sim_spearman
1991
- value: 85.08683458043946
1992
- - type: euclidean_pearson
1993
- value: 84.56699492836385
1994
- - type: euclidean_spearman
1995
- value: 85.66089116133713
1996
- - type: manhattan_pearson
1997
- value: 84.47553323458541
1998
- - type: manhattan_spearman
1999
- value: 85.56142206781472
2000
- - task:
2001
- type: STS
2002
- dataset:
2003
- type: mteb/sts14-sts
2004
- name: MTEB STS14
2005
- config: default
2006
- split: test
2007
- revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2008
- metrics:
2009
- - type: cos_sim_pearson
2010
- value: 82.71377893595067
2011
- - type: cos_sim_spearman
2012
- value: 81.03453291428589
2013
- - type: euclidean_pearson
2014
- value: 82.57136298308613
2015
- - type: euclidean_spearman
2016
- value: 81.15839961890875
2017
- - type: manhattan_pearson
2018
- value: 82.55157879373837
2019
- - type: manhattan_spearman
2020
- value: 81.1540163767054
2021
- - task:
2022
- type: STS
2023
- dataset:
2024
- type: mteb/sts15-sts
2025
- name: MTEB STS15
2026
- config: default
2027
- split: test
2028
- revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2029
- metrics:
2030
- - type: cos_sim_pearson
2031
- value: 86.64197832372373
2032
- - type: cos_sim_spearman
2033
- value: 88.31966852492485
2034
- - type: euclidean_pearson
2035
- value: 87.98692129976983
2036
- - type: euclidean_spearman
2037
- value: 88.6247340837856
2038
- - type: manhattan_pearson
2039
- value: 87.90437827826412
2040
- - type: manhattan_spearman
2041
- value: 88.56278787131457
2042
- - task:
2043
- type: STS
2044
- dataset:
2045
- type: mteb/sts16-sts
2046
- name: MTEB STS16
2047
- config: default
2048
- split: test
2049
- revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2050
- metrics:
2051
- - type: cos_sim_pearson
2052
- value: 81.84159950146693
2053
- - type: cos_sim_spearman
2054
- value: 83.90678384140168
2055
- - type: euclidean_pearson
2056
- value: 83.19005018860221
2057
- - type: euclidean_spearman
2058
- value: 84.16260415876295
2059
- - type: manhattan_pearson
2060
- value: 83.05030612994494
2061
- - type: manhattan_spearman
2062
- value: 83.99605629718336
2063
- - task:
2064
- type: STS
2065
- dataset:
2066
- type: mteb/sts17-crosslingual-sts
2067
- name: MTEB STS17 (en-en)
2068
- config: en-en
2069
- split: test
2070
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2071
- metrics:
2072
- - type: cos_sim_pearson
2073
- value: 87.49935350176666
2074
- - type: cos_sim_spearman
2075
- value: 87.59086606735383
2076
- - type: euclidean_pearson
2077
- value: 88.06537181129983
2078
- - type: euclidean_spearman
2079
- value: 87.6687448086014
2080
- - type: manhattan_pearson
2081
- value: 87.96599131972935
2082
- - type: manhattan_spearman
2083
- value: 87.63295748969642
2084
- - task:
2085
- type: STS
2086
- dataset:
2087
- type: mteb/sts22-crosslingual-sts
2088
- name: MTEB STS22 (en)
2089
- config: en
2090
- split: test
2091
- revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2092
- metrics:
2093
- - type: cos_sim_pearson
2094
- value: 67.68232799482763
2095
- - type: cos_sim_spearman
2096
- value: 67.99930378085793
2097
- - type: euclidean_pearson
2098
- value: 68.50275360001696
2099
- - type: euclidean_spearman
2100
- value: 67.81588179309259
2101
- - type: manhattan_pearson
2102
- value: 68.5892154749763
2103
- - type: manhattan_spearman
2104
- value: 67.84357259640682
2105
- - task:
2106
- type: STS
2107
- dataset:
2108
- type: mteb/stsbenchmark-sts
2109
- name: MTEB STSBenchmark
2110
- config: default
2111
- split: test
2112
- revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2113
- metrics:
2114
- - type: cos_sim_pearson
2115
- value: 84.37049618406554
2116
- - type: cos_sim_spearman
2117
- value: 85.57014313159492
2118
- - type: euclidean_pearson
2119
- value: 85.57469513908282
2120
- - type: euclidean_spearman
2121
- value: 85.661948135258
2122
- - type: manhattan_pearson
2123
- value: 85.36866831229028
2124
- - type: manhattan_spearman
2125
- value: 85.5043455368843
2126
- - task:
2127
- type: Reranking
2128
- dataset:
2129
- type: mteb/scidocs-reranking
2130
- name: MTEB SciDocsRR
2131
- config: default
2132
- split: test
2133
- revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2134
- metrics:
2135
- - type: map
2136
- value: 84.83259065376154
2137
- - type: mrr
2138
- value: 95.58455433455433
2139
- - task:
2140
- type: Retrieval
2141
- dataset:
2142
- type: scifact
2143
- name: MTEB SciFact
2144
- config: default
2145
- split: test
2146
- revision: None
2147
- metrics:
2148
- - type: map_at_1
2149
- value: 58.817
2150
- - type: map_at_10
2151
- value: 68.459
2152
- - type: map_at_100
2153
- value: 68.951
2154
- - type: map_at_1000
2155
- value: 68.979
2156
- - type: map_at_3
2157
- value: 65.791
2158
- - type: map_at_5
2159
- value: 67.583
2160
- - type: mrr_at_1
2161
- value: 61.667
2162
- - type: mrr_at_10
2163
- value: 69.368
2164
- - type: mrr_at_100
2165
- value: 69.721
2166
- - type: mrr_at_1000
2167
- value: 69.744
2168
- - type: mrr_at_3
2169
- value: 67.278
2170
- - type: mrr_at_5
2171
- value: 68.611
2172
- - type: ndcg_at_1
2173
- value: 61.667
2174
- - type: ndcg_at_10
2175
- value: 72.70100000000001
2176
- - type: ndcg_at_100
2177
- value: 74.928
2178
- - type: ndcg_at_1000
2179
- value: 75.553
2180
- - type: ndcg_at_3
2181
- value: 68.203
2182
- - type: ndcg_at_5
2183
- value: 70.804
2184
- - type: precision_at_1
2185
- value: 61.667
2186
- - type: precision_at_10
2187
- value: 9.533
2188
- - type: precision_at_100
2189
- value: 1.077
2190
- - type: precision_at_1000
2191
- value: 0.11299999999999999
2192
- - type: precision_at_3
2193
- value: 26.444000000000003
2194
- - type: precision_at_5
2195
- value: 17.599999999999998
2196
- - type: recall_at_1
2197
- value: 58.817
2198
- - type: recall_at_10
2199
- value: 84.789
2200
- - type: recall_at_100
2201
- value: 95.0
2202
- - type: recall_at_1000
2203
- value: 99.667
2204
- - type: recall_at_3
2205
- value: 72.8
2206
- - type: recall_at_5
2207
- value: 79.294
2208
- - task:
2209
- type: PairClassification
2210
- dataset:
2211
- type: mteb/sprintduplicatequestions-pairclassification
2212
- name: MTEB SprintDuplicateQuestions
2213
- config: default
2214
- split: test
2215
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2216
- metrics:
2217
- - type: cos_sim_accuracy
2218
- value: 99.8108910891089
2219
- - type: cos_sim_ap
2220
- value: 95.5743678558349
2221
- - type: cos_sim_f1
2222
- value: 90.43133366385722
2223
- - type: cos_sim_precision
2224
- value: 89.67551622418878
2225
- - type: cos_sim_recall
2226
- value: 91.2
2227
- - type: dot_accuracy
2228
- value: 99.75841584158415
2229
- - type: dot_ap
2230
- value: 94.00786363627253
2231
- - type: dot_f1
2232
- value: 87.51910341314316
2233
- - type: dot_precision
2234
- value: 89.20041536863967
2235
- - type: dot_recall
2236
- value: 85.9
2237
- - type: euclidean_accuracy
2238
- value: 99.81485148514851
2239
- - type: euclidean_ap
2240
- value: 95.4752113136905
2241
- - type: euclidean_f1
2242
- value: 90.44334975369456
2243
- - type: euclidean_precision
2244
- value: 89.126213592233
2245
- - type: euclidean_recall
2246
- value: 91.8
2247
- - type: manhattan_accuracy
2248
- value: 99.81584158415842
2249
- - type: manhattan_ap
2250
- value: 95.5163172682464
2251
- - type: manhattan_f1
2252
- value: 90.51987767584097
2253
- - type: manhattan_precision
2254
- value: 92.3076923076923
2255
- - type: manhattan_recall
2256
- value: 88.8
2257
- - type: max_accuracy
2258
- value: 99.81584158415842
2259
- - type: max_ap
2260
- value: 95.5743678558349
2261
- - type: max_f1
2262
- value: 90.51987767584097
2263
- - task:
2264
- type: Clustering
2265
- dataset:
2266
- type: mteb/stackexchange-clustering
2267
- name: MTEB StackExchangeClustering
2268
- config: default
2269
- split: test
2270
- revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2271
- metrics:
2272
- - type: v_measure
2273
- value: 62.63235986949449
2274
- - task:
2275
- type: Clustering
2276
- dataset:
2277
- type: mteb/stackexchange-clustering-p2p
2278
- name: MTEB StackExchangeClusteringP2P
2279
- config: default
2280
- split: test
2281
- revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2282
- metrics:
2283
- - type: v_measure
2284
- value: 36.334795589585575
2285
- - task:
2286
- type: Reranking
2287
- dataset:
2288
- type: mteb/stackoverflowdupquestions-reranking
2289
- name: MTEB StackOverflowDupQuestions
2290
- config: default
2291
- split: test
2292
- revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2293
- metrics:
2294
- - type: map
2295
- value: 52.02955214518782
2296
- - type: mrr
2297
- value: 52.8004838298956
2298
- - task:
2299
- type: Summarization
2300
- dataset:
2301
- type: mteb/summeval
2302
- name: MTEB SummEval
2303
- config: default
2304
- split: test
2305
- revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2306
- metrics:
2307
- - type: cos_sim_pearson
2308
- value: 30.63769566275453
2309
- - type: cos_sim_spearman
2310
- value: 30.422379185989335
2311
- - type: dot_pearson
2312
- value: 26.88493071882256
2313
- - type: dot_spearman
2314
- value: 26.505249740971305
2315
- - task:
2316
- type: Retrieval
2317
- dataset:
2318
- type: trec-covid
2319
- name: MTEB TRECCOVID
2320
- config: default
2321
- split: test
2322
- revision: None
2323
- metrics:
2324
- - type: map_at_1
2325
- value: 0.21
2326
- - type: map_at_10
2327
- value: 1.654
2328
- - type: map_at_100
2329
- value: 10.095
2330
- - type: map_at_1000
2331
- value: 25.808999999999997
2332
- - type: map_at_3
2333
- value: 0.594
2334
- - type: map_at_5
2335
- value: 0.9289999999999999
2336
- - type: mrr_at_1
2337
- value: 78.0
2338
- - type: mrr_at_10
2339
- value: 87.019
2340
- - type: mrr_at_100
2341
- value: 87.019
2342
- - type: mrr_at_1000
2343
- value: 87.019
2344
- - type: mrr_at_3
2345
- value: 86.333
2346
- - type: mrr_at_5
2347
- value: 86.733
2348
- - type: ndcg_at_1
2349
- value: 73.0
2350
- - type: ndcg_at_10
2351
- value: 66.52900000000001
2352
- - type: ndcg_at_100
2353
- value: 53.433
2354
- - type: ndcg_at_1000
2355
- value: 51.324000000000005
2356
- - type: ndcg_at_3
2357
- value: 72.02199999999999
2358
- - type: ndcg_at_5
2359
- value: 69.696
2360
- - type: precision_at_1
2361
- value: 78.0
2362
- - type: precision_at_10
2363
- value: 70.39999999999999
2364
- - type: precision_at_100
2365
- value: 55.46
2366
- - type: precision_at_1000
2367
- value: 22.758
2368
- - type: precision_at_3
2369
- value: 76.667
2370
- - type: precision_at_5
2371
- value: 74.0
2372
- - type: recall_at_1
2373
- value: 0.21
2374
- - type: recall_at_10
2375
- value: 1.8849999999999998
2376
- - type: recall_at_100
2377
- value: 13.801
2378
- - type: recall_at_1000
2379
- value: 49.649
2380
- - type: recall_at_3
2381
- value: 0.632
2382
- - type: recall_at_5
2383
- value: 1.009
2384
- - task:
2385
- type: Retrieval
2386
- dataset:
2387
- type: webis-touche2020
2388
- name: MTEB Touche2020
2389
- config: default
2390
- split: test
2391
- revision: None
2392
- metrics:
2393
- - type: map_at_1
2394
- value: 1.797
2395
- - type: map_at_10
2396
- value: 9.01
2397
- - type: map_at_100
2398
- value: 14.682
2399
- - type: map_at_1000
2400
- value: 16.336000000000002
2401
- - type: map_at_3
2402
- value: 4.546
2403
- - type: map_at_5
2404
- value: 5.9270000000000005
2405
- - type: mrr_at_1
2406
- value: 24.490000000000002
2407
- - type: mrr_at_10
2408
- value: 41.156
2409
- - type: mrr_at_100
2410
- value: 42.392
2411
- - type: mrr_at_1000
2412
- value: 42.408
2413
- - type: mrr_at_3
2414
- value: 38.775999999999996
2415
- - type: mrr_at_5
2416
- value: 40.102
2417
- - type: ndcg_at_1
2418
- value: 21.429000000000002
2419
- - type: ndcg_at_10
2420
- value: 22.222
2421
- - type: ndcg_at_100
2422
- value: 34.405
2423
- - type: ndcg_at_1000
2424
- value: 46.599000000000004
2425
- - type: ndcg_at_3
2426
- value: 25.261
2427
- - type: ndcg_at_5
2428
- value: 22.695999999999998
2429
- - type: precision_at_1
2430
- value: 24.490000000000002
2431
- - type: precision_at_10
2432
- value: 19.796
2433
- - type: precision_at_100
2434
- value: 7.306
2435
- - type: precision_at_1000
2436
- value: 1.5350000000000001
2437
- - type: precision_at_3
2438
- value: 27.211000000000002
2439
- - type: precision_at_5
2440
- value: 22.857
2441
- - type: recall_at_1
2442
- value: 1.797
2443
- - type: recall_at_10
2444
- value: 15.706000000000001
2445
- - type: recall_at_100
2446
- value: 46.412
2447
- - type: recall_at_1000
2448
- value: 83.159
2449
- - type: recall_at_3
2450
- value: 6.1370000000000005
2451
- - type: recall_at_5
2452
- value: 8.599
2453
- - task:
2454
- type: Classification
2455
- dataset:
2456
- type: mteb/toxic_conversations_50k
2457
- name: MTEB ToxicConversationsClassification
2458
- config: default
2459
- split: test
2460
- revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2461
- metrics:
2462
- - type: accuracy
2463
- value: 70.3302
2464
- - type: ap
2465
- value: 14.169121204575601
2466
- - type: f1
2467
- value: 54.229345975274235
2468
- - task:
2469
- type: Classification
2470
- dataset:
2471
- type: mteb/tweet_sentiment_extraction
2472
- name: MTEB TweetSentimentExtractionClassification
2473
- config: default
2474
- split: test
2475
- revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2476
- metrics:
2477
- - type: accuracy
2478
- value: 58.22297679683077
2479
- - type: f1
2480
- value: 58.62984908377875
2481
- - task:
2482
- type: Clustering
2483
- dataset:
2484
- type: mteb/twentynewsgroups-clustering
2485
- name: MTEB TwentyNewsgroupsClustering
2486
- config: default
2487
- split: test
2488
- revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2489
- metrics:
2490
- - type: v_measure
2491
- value: 49.952922428464255
2492
- - task:
2493
- type: PairClassification
2494
- dataset:
2495
- type: mteb/twittersemeval2015-pairclassification
2496
- name: MTEB TwitterSemEval2015
2497
- config: default
2498
- split: test
2499
- revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2500
- metrics:
2501
- - type: cos_sim_accuracy
2502
- value: 84.68140907194373
2503
- - type: cos_sim_ap
2504
- value: 70.12180123666836
2505
- - type: cos_sim_f1
2506
- value: 65.77501791258658
2507
- - type: cos_sim_precision
2508
- value: 60.07853403141361
2509
- - type: cos_sim_recall
2510
- value: 72.66490765171504
2511
- - type: dot_accuracy
2512
- value: 81.92167848840674
2513
- - type: dot_ap
2514
- value: 60.49837581423469
2515
- - type: dot_f1
2516
- value: 58.44186046511628
2517
- - type: dot_precision
2518
- value: 52.24532224532224
2519
- - type: dot_recall
2520
- value: 66.3060686015831
2521
- - type: euclidean_accuracy
2522
- value: 84.73505394289802
2523
- - type: euclidean_ap
2524
- value: 70.3278904593286
2525
- - type: euclidean_f1
2526
- value: 65.98851124940161
2527
- - type: euclidean_precision
2528
- value: 60.38107752956636
2529
- - type: euclidean_recall
2530
- value: 72.74406332453826
2531
- - type: manhattan_accuracy
2532
- value: 84.73505394289802
2533
- - type: manhattan_ap
2534
- value: 70.00737738537337
2535
- - type: manhattan_f1
2536
- value: 65.80150784822642
2537
- - type: manhattan_precision
2538
- value: 61.892583120204606
2539
- - type: manhattan_recall
2540
- value: 70.23746701846966
2541
- - type: max_accuracy
2542
- value: 84.73505394289802
2543
- - type: max_ap
2544
- value: 70.3278904593286
2545
- - type: max_f1
2546
- value: 65.98851124940161
2547
- - task:
2548
- type: PairClassification
2549
- dataset:
2550
- type: mteb/twitterurlcorpus-pairclassification
2551
- name: MTEB TwitterURLCorpus
2552
- config: default
2553
- split: test
2554
- revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2555
- metrics:
2556
- - type: cos_sim_accuracy
2557
- value: 88.44258159661582
2558
- - type: cos_sim_ap
2559
- value: 84.91926704880888
2560
- - type: cos_sim_f1
2561
- value: 77.07651086632926
2562
- - type: cos_sim_precision
2563
- value: 74.5894554883319
2564
- - type: cos_sim_recall
2565
- value: 79.73514012935017
2566
- - type: dot_accuracy
2567
- value: 85.88116583226608
2568
- - type: dot_ap
2569
- value: 78.9753854779923
2570
- - type: dot_f1
2571
- value: 72.17757637979255
2572
- - type: dot_precision
2573
- value: 66.80647486729143
2574
- - type: dot_recall
2575
- value: 78.48783492454572
2576
- - type: euclidean_accuracy
2577
- value: 88.5299025885823
2578
- - type: euclidean_ap
2579
- value: 85.08006075642194
2580
- - type: euclidean_f1
2581
- value: 77.29637336504163
2582
- - type: euclidean_precision
2583
- value: 74.69836253950014
2584
- - type: euclidean_recall
2585
- value: 80.08161379735141
2586
- - type: manhattan_accuracy
2587
- value: 88.55124771995187
2588
- - type: manhattan_ap
2589
- value: 85.00941529932851
2590
- - type: manhattan_f1
2591
- value: 77.33100233100232
2592
- - type: manhattan_precision
2593
- value: 73.37572573956317
2594
- - type: manhattan_recall
2595
- value: 81.73698798891284
2596
- - type: max_accuracy
2597
- value: 88.55124771995187
2598
- - type: max_ap
2599
- value: 85.08006075642194
2600
- - type: max_f1
2601
- value: 77.33100233100232
2602
  language:
2603
- - en
2604
  license: mit
2605
  ---
2606
 
2607
- Forked from [thenlper/gte-small](huggingface.co/thenlper/gte-small) with ONNX to work with Transformers.js.
2608
 
2609
  # gte-small
2610
 
@@ -2638,50 +43,68 @@ We compared the performance of the GTE models with other popular text embedding
2638
 
2639
  ## Usage
2640
 
2641
- Code example
2642
 
2643
- ```python
2644
- import torch.nn.functional as F
2645
- from torch import Tensor
2646
- from transformers import AutoTokenizer, AutoModel
2647
 
2648
- def average_pool(last_hidden_states: Tensor,
2649
- attention_mask: Tensor) -> Tensor:
2650
- last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
2651
- return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
2652
 
2653
- input_texts = [
2654
- "what is the capital of China?",
2655
- "how to implement quick sort in python?",
2656
- "Beijing",
2657
- "sorting algorithms"
2658
- ]
2659
 
2660
- tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
2661
- model = AutoModel.from_pretrained("thenlper/gte-small")
 
 
 
2662
 
2663
- # Tokenize the input texts
2664
- batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
 
 
 
2665
 
2666
- outputs = model(**batch_dict)
2667
- embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
2668
 
2669
- # (Optionally) normalize embeddings
2670
- embeddings = F.normalize(embeddings, p=2, dim=1)
2671
- scores = (embeddings[:1] @ embeddings[1:].T) * 100
2672
- print(scores.tolist())
2673
  ```
2674
 
2675
- Use with sentence-transformers:
2676
- ```python
2677
- from sentence_transformers import SentenceTransformer
2678
- from sentence_transformers.util import cos_sim
2679
 
2680
- sentences = ['That is a happy person', 'That is a very happy person']
2681
 
2682
- model = SentenceTransformer('thenlper/gte-large')
2683
- embeddings = model.encode(sentences)
2684
- print(cos_sim(embeddings[0], embeddings[1]))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685
  ```
2686
 
2687
  ### Limitation
@@ -2690,8 +113,6 @@ This model exclusively caters to English texts, and any lengthy texts will be tr
2690
 
2691
  ### Citation
2692
 
2693
- If you find our paper or models helpful, please consider citing them as follows:
2694
-
2695
  ```
2696
  @misc{li2023general,
2697
  title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
@@ -2701,4 +122,4 @@ If you find our paper or models helpful, please consider citing them as follows:
2701
  archivePrefix={arXiv},
2702
  primaryClass={cs.CL}
2703
  }
2704
- ```
 
1
  ---
2
  tags:
3
+ - Transformers.js
4
+ - feature extraction
5
+ pipeline_tag: feature-extraction
6
+ library_name: "transformers.js"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  language:
8
+ - en
9
  license: mit
10
  ---
11
 
12
+ Fork of [thenlper/gte-small](huggingface.co/thenlper/gte-small) with ONNX to work with Transformers.js.
13
 
14
  # gte-small
15
 
 
43
 
44
  ## Usage
45
 
46
+ ### Node JS
47
 
48
+ first install transformers.js using `npm i @xenova/transformers`.
 
 
 
49
 
50
+ ```javascript
51
+ import { env, pipeline } from '@xenova/transformers'
 
 
52
 
53
+ (async () => {
54
+ // Give it any input you want
55
+ const input = "Hello AI";
 
 
 
56
 
57
+ // Create the pipeline
58
+ const pipe = await pipeline(
59
+ "feature-extraction",
60
+ "koxy-ai/gte-small"
61
+ );
62
 
63
+ // Generate the embedding
64
+ const output = await pipe(input, {
65
+ pooling: "mean",
66
+ normalize: true
67
+ });
68
 
69
+ // Extract the embedding from the output
70
+ const embedding = Array.from(output.data);
71
 
72
+ // Do anything with the embedding
73
+ console.log(embedding);
74
+ });
 
75
  ```
76
 
77
+ ### Deno
 
 
 
78
 
79
+ No need to install anything.
80
 
81
+ ```javascript
82
+ import { env, pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'
83
+
84
+ // Some config for Deno
85
+ env.useBrowserCache = false;
86
+ env.allowLocalModels = false;
87
+
88
+ // Give it any input you want
89
+ const input = "Hello AI";
90
+
91
+ // Create the pipeline
92
+ const pipe = await pipeline(
93
+ "feature-extraction",
94
+ "koxy-ai/gte-small"
95
+ );
96
+
97
+ // Generate the embedding
98
+ const output = await pipe(input, {
99
+ pooling: "mean",
100
+ normalize: true
101
+ });
102
+
103
+ // Extract the embedding from the output
104
+ const embedding = Array.from(output.data);
105
+
106
+ // Do anything with the embedding
107
+ console.log(embedding);
108
  ```
109
 
110
  ### Limitation
 
113
 
114
  ### Citation
115
 
 
 
116
  ```
117
  @misc{li2023general,
118
  title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
 
122
  archivePrefix={arXiv},
123
  primaryClass={cs.CL}
124
  }
125
+ ```