File size: 4,442 Bytes
7e48c89
 
453f6a6
7e48c89
 
453f6a6
7e48c89
453f6a6
7e48c89
453f6a6
7e48c89
 
 
 
 
34d7aaa
453f6a6
 
 
 
7e48c89
453f6a6
7e48c89
453f6a6
7e48c89
34d7aaa
7e48c89
453f6a6
7e48c89
 
 
 
 
453f6a6
7e48c89
453f6a6
7e48c89
453f6a6
7e48c89
 
 
453f6a6
7e48c89
453f6a6
7e48c89
 
 
453f6a6
 
7e48c89
 
 
453f6a6
 
7e48c89
453f6a6
7e48c89
 
 
453f6a6
 
 
 
 
7e48c89
453f6a6
 
 
 
78211e3
7e48c89
 
 
 
 
453f6a6
 
 
7e48c89
 
 
453f6a6
 
 
7e48c89
453f6a6
 
7e48c89
453f6a6
 
7e48c89
453f6a6
7e48c89
 
 
453f6a6
7e48c89
453f6a6
 
7e48c89
453f6a6
7e48c89
453f6a6
 
7e48c89
453f6a6
 
7e48c89
453f6a6
7e48c89
 
 
453f6a6
 
7e48c89
453f6a6
 
7e48c89
453f6a6
 
7e48c89
453f6a6
 
7e48c89
453f6a6
7e48c89
453f6a6
7e48c89
453f6a6
 
7e48c89
453f6a6
 
7e48c89
453f6a6
 
7e48c89
453f6a6
7e48c89
453f6a6
7e48c89
453f6a6
 
 
 
 
 
 
78211e3
7e48c89
453f6a6
 
 
 
7e48c89
 
 
453f6a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
library_name: transformers
tags: [retrieval-augmented-generation, finetuning, llm, huggingface]
---

# Model Card for Finetuned Llama 3.2 (ROS Query System)

This model is a finetuned version of Llama 3.2 specifically designed to answer questions related to the Robot Operating System (ROS). It was finetuned on Kaggle using domain-specific data scraped from GitHub repositories and Medium articles. The model powers a Retrieval-Augmented Generation (RAG) pipeline in our AI final project.

---

## Model Details

### Model Description

- **Developed by:** Krish Murjani (netid: km6520) & Shresth Kapoor (netid: sk11677)
- **Project Name:** CS-GY-6613 AI Final Project: ROS Query System
- **Finetuned From:** `sentence-transformers/all-MiniLM-L6-v2`
- **Language(s):** English
- **License:** Apache 2.0

---

### Model Sources

- **Repository:** [GitHub Repository](https://github.com/krishmurjani/cs-gy-6613-final-project)

---

## Uses

### Direct Use

The model is used in a Retrieval-Augmented Generation (RAG) pipeline for answering questions related to the Robot Operating System (ROS). It integrates with a vector search engine (Qdrant) and MongoDB for efficient retrieval and query response generation.

### Downstream Use

The model can be extended for other technical domains through additional finetuning or plug-in integration into larger AI systems.

### Out-of-Scope Use

The model is not designed for tasks outside of technical documentation retrieval and answering ROS-related queries.

---

## Bias, Risks, and Limitations

- **Bias:** The model may reflect biases inherent in the scraped ROS documentation and articles.
- **Limitations:** Responses are limited to the scraped and finetuned dataset. It may not generalize to broader queries.

### Recommendations

- Use the model for educational and research purposes in robotics and ROS-specific domains.
- Avoid using the model in high-stakes applications where critical decisions rely on the accuracy of generated responses.

---

## How to Get Started with the Model

```python
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("your-model-id")
tokenizer = AutoTokenizer.from_pretrained("your-model-id")

input_text = "How can I navigate to a specific pose using ROS?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model(**inputs)
print(outputs)
```

## Training Details

### Training Data

- **Sources:** 
  - GitHub repositories related to the Robot Operating System (ROS).
  - Medium articles discussing ROS topics.

### Training Procedure

- **Preprocessing:** 
  - Data cleaning, text chunking, and embedding using Sentence-BERT (`all-MiniLM-L6-v2`).
  - Used ClearML orchestrator for ETL and finetuning pipelines.

- **Training Framework:** 
  - Hugging Face Transformers, PyTorch

- **Training Regime:** 
  - fp16 mixed precision (for efficiency and memory optimization)

---

## Evaluation

### Testing Data

- **Dataset:** 
  - Internal evaluation dataset created from project-specific queries and generated question-answer pairs.

### Factors & Metrics

- **Metrics:** 
  - Query relevance, answer accuracy, and completeness.

- **Evaluation Results:** 
  - Achieved high relevance and precision for domain-specific questions related to ROS.

---

## Environmental Impact

- **Hardware Type:** 
  - NVIDIA Tesla T4 (Kaggle)

- **Hours Used:** 
  - Approximately 15-20 hours of training

- **Compute Region:** 
  - US Central (Kaggle Cloud)

- **Carbon Emitted:** 
  - Estimated using the [Machine Learning Impact Calculator](https://mlco2.github.io/impact#compute).

---

## Technical Specifications

- **Model Architecture:** 
  - Transformer-based language model (Llama 3.2)

- **Compute Infrastructure:** 
  - Kaggle Cloud with NVIDIA Tesla T4 GPUs

- **Frameworks:** 
  - Hugging Face Transformers, PyTorch, ClearML

---

## Citation

```bibtex
@misc{kapoor2024rosquery,
  title={ROS Query System: A Retrieval-Augmented Generation Pipeline},
  author={Shresth Kapoor and Krish Murjani},
  year={2024},
  note={CS-GY-6613 AI Final Project, NYU Tandon School of Engineering}
}
```

## Model Card Authors
- Krish Murjani ([krishmurjani](https://huggingface.co/krishmurjani))
- Shresth Kapoor ([shresthkapoor7](https://huggingface.co/shresthkapoor7))
	

## Model Card Contact

For any inquiries, please contact us through our ([GitHub Repository](https://github.com/krishmurjani/cs-gy-6613-final-project)).