File size: 1,884 Bytes
c1ccae4
 
 
78e8a51
c1ccae4
 
 
 
 
 
 
 
78e8a51
c1ccae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: mistralai/Mistral-7B-Instruct-v0.1
datasets:
- krishnapal2308/SROIE
library_name: peft
license: apache-2.0
tags:
- trl
- sft
model-index:
- name: mistral-instruct-7b-finetuned-sroie
  results: []
pipeline_tag: text-generation
---

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/krishnapal-exl/huggingface/runs/cu7whasc)
# mistral-instruct-7b-finetuned-sroie

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7668

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 50
- training_steps: 120
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4458        | 0.4848 | 20   | 1.3313          |
| 1.1796        | 0.9697 | 40   | 1.1143          |
| 1.0555        | 1.4545 | 60   | 0.9733          |
| 0.9514        | 1.9394 | 80   | 0.8829          |
| 0.8599        | 2.4242 | 100  | 0.8150          |
| 0.857         | 2.9091 | 120  | 0.7668          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1