Upload model_pipeline.py with huggingface_hub
Browse files- model_pipeline.py +160 -0
model_pipeline.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
from io import BytesIO
|
5 |
+
from PIL import Image
|
6 |
+
import pandas as pd
|
7 |
+
import google.generativeai as genai
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from google.colab import files
|
10 |
+
|
11 |
+
# Set up the Generative AI API key
|
12 |
+
api_key = os.getenv('GOOGLE_API_KEY') # Use environment variable for API key security
|
13 |
+
genai.configure(api_key=api_key)
|
14 |
+
|
15 |
+
categories = ["Personal Care", "Household Care", "Dairy", "Staples", "Snacks and Beverages", "Packaged Food", "Fruits and Vegetables"]
|
16 |
+
|
17 |
+
# Step 1: Download image from URL
|
18 |
+
def download_image(image_url):
|
19 |
+
try:
|
20 |
+
response = requests.get(image_url)
|
21 |
+
response.raise_for_status() # Check if the request was successful
|
22 |
+
img = Image.open(BytesIO(response.content))
|
23 |
+
temp_path = "temp_image.jpg" # Temporary path
|
24 |
+
img.save(temp_path) # Save the image locally for further use
|
25 |
+
return temp_path
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error downloading image: {e}")
|
28 |
+
return None
|
29 |
+
|
30 |
+
# Step 2: Upload Image to the API
|
31 |
+
def upload_image(image_path):
|
32 |
+
sample_file = genai.upload_file(path=image_path, display_name="Product Image")
|
33 |
+
print(f"Uploaded file '{sample_file.display_name}' as: {sample_file.uri}")
|
34 |
+
return sample_file
|
35 |
+
|
36 |
+
# Step 3: Display Image
|
37 |
+
def display_image(image_path):
|
38 |
+
img = Image.open(image_path)
|
39 |
+
plt.imshow(img)
|
40 |
+
plt.axis('off')
|
41 |
+
plt.show()
|
42 |
+
|
43 |
+
# Step 4: Classify image to decide whether it contains fruits/vegetables or other products
|
44 |
+
def classify_image(sample_file):
|
45 |
+
model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest")
|
46 |
+
response = model.generate_content([sample_file, "Does this image contain fruits or vegetables? Answer 'yes' or 'no' only."])
|
47 |
+
classification = response.text.strip().lower()
|
48 |
+
return classification == "yes"
|
49 |
+
|
50 |
+
# Step 5: Predict freshness (for fruits and vegetables)
|
51 |
+
def predict_freshness(sample_file):
|
52 |
+
model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest")
|
53 |
+
response = model.generate_content([sample_file, "Can you provide the average freshness index (1-10) of the fruits/vegetables in the image. Just output the number."])
|
54 |
+
try:
|
55 |
+
freshness_index = int(response.text.strip())
|
56 |
+
return freshness_index
|
57 |
+
except ValueError:
|
58 |
+
print("Error: Unable to convert the response to an integer.")
|
59 |
+
return None
|
60 |
+
|
61 |
+
# Step 6: Generate product details (for other products)
|
62 |
+
def generate_product_details(sample_file):
|
63 |
+
model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest")
|
64 |
+
response = model.generate_content([sample_file,
|
65 |
+
f"Tell me the name of each product, its category among the following list of categories: {categories}, brand, MRP, manufacturer, expiry date, and quantity in the image. "
|
66 |
+
"Do not output anything else. Output format for each product: "
|
67 |
+
"Product Name: [Extracted Product name], Category: [Extracted Category], Brand: [Extracted Brand name], MRP: [Extracted MRP], Manufacturer: [Extracted Manufacturer name], "
|
68 |
+
"Expiry Date: [Extracted Expiry Date], Quantity: [Extracted Quantity]. Separate the details of each product with one newline character. "
|
69 |
+
"If some of the information is not available for a product, then output NA for that detail."
|
70 |
+
])
|
71 |
+
return response.text.strip() if response else ""
|
72 |
+
|
73 |
+
# Step 7: Parse the response into a DataFrame
|
74 |
+
def parse_response_to_dataframe(response_text):
|
75 |
+
columns = ["Product Name", "Category", "Brand", "MRP", "Manufacturer", "Expiry Date", "Quantity"]
|
76 |
+
product_sections = response_text.split("\n")
|
77 |
+
products_list = []
|
78 |
+
|
79 |
+
for product_section in product_sections:
|
80 |
+
product_details = {col: "NA" for col in columns}
|
81 |
+
response_parts = product_section.split(", ")
|
82 |
+
|
83 |
+
for part in response_parts:
|
84 |
+
if "Product Name" in part:
|
85 |
+
product_details["Product Name"] = part.split(": ")[1]
|
86 |
+
elif "Category" in part:
|
87 |
+
product_details["Category"] = part.split(": ")[1]
|
88 |
+
elif "Brand" in part:
|
89 |
+
product_details["Brand"] = part.split(": ")[1]
|
90 |
+
elif "MRP" in part:
|
91 |
+
product_details["MRP"] = part.split(": ")[1]
|
92 |
+
elif "Manufacturer" in part:
|
93 |
+
product_details["Manufacturer"] = part.split(": ")[1]
|
94 |
+
elif "Expiry Date" in part:
|
95 |
+
product_details["Expiry Date"] = part.split(": ")[1]
|
96 |
+
elif "Quantity" in part:
|
97 |
+
product_details["Quantity"] = part.split(": ")[1]
|
98 |
+
|
99 |
+
products_list.append(product_details)
|
100 |
+
|
101 |
+
return pd.DataFrame(products_list, columns=columns)
|
102 |
+
|
103 |
+
# Step 8: Style the DataFrame for better display
|
104 |
+
def style_dataframe(df):
|
105 |
+
return df.style.set_properties(**{'text-align': 'center', 'border': '1px solid grey'}) .set_table_styles([{'selector': 'td', 'props': [('border', '1px solid grey')]}], overwrite=False)
|
106 |
+
|
107 |
+
# Step 9: Display results (image and styled DataFrame)
|
108 |
+
def display_results(image_path, styled_df):
|
109 |
+
display_image(image_path) # Display the image
|
110 |
+
print("\nProduct Details:\n")
|
111 |
+
display(styled_df) # Display the styled DataFrame
|
112 |
+
|
113 |
+
# Step 10: Save DataFrame to CSV
|
114 |
+
def save_dataframe_to_csv(df, file_name="product_details.csv"):
|
115 |
+
df.to_csv(file_name, index=False)
|
116 |
+
print(f"DataFrame saved to {file_name}")
|
117 |
+
|
118 |
+
# Combined Pipeline: Choose action based on image content
|
119 |
+
def combined_pipeline(image_source, is_url=False):
|
120 |
+
# Step 1: Download the image if it's a URL
|
121 |
+
if is_url:
|
122 |
+
image_path = download_image(image_source)
|
123 |
+
if not image_path:
|
124 |
+
print("Failed to download the image.")
|
125 |
+
return
|
126 |
+
else:
|
127 |
+
image_path = image_source
|
128 |
+
|
129 |
+
# Step 2: Upload the image
|
130 |
+
sample_file = upload_image(image_path)
|
131 |
+
if not sample_file:
|
132 |
+
print("Error uploading image.")
|
133 |
+
return
|
134 |
+
|
135 |
+
# Step 3: Classify whether the image contains fruits/vegetables
|
136 |
+
is_fruits_or_vegetables = classify_image(sample_file)
|
137 |
+
|
138 |
+
if is_fruits_or_vegetables:
|
139 |
+
print("Image contains fruits or vegetables. Predicting freshness...")
|
140 |
+
freshness_index = predict_freshness(sample_file)
|
141 |
+
if freshness_index is not None:
|
142 |
+
print(f"The predicted freshness index is: {freshness_index}")
|
143 |
+
else:
|
144 |
+
print("Failed to predict freshness.")
|
145 |
+
else:
|
146 |
+
print("Image contains products. Extracting details...")
|
147 |
+
response_text = generate_product_details(sample_file)
|
148 |
+
if not response_text:
|
149 |
+
print("No product details generated.")
|
150 |
+
return
|
151 |
+
|
152 |
+
df = parse_response_to_dataframe(response_text)
|
153 |
+
styled_df = style_dataframe(df)
|
154 |
+
display_results(image_path, styled_df)
|
155 |
+
|
156 |
+
# Save the DataFrame to a CSV file
|
157 |
+
save_dataframe_to_csv(df, "product_details.csv")
|
158 |
+
|
159 |
+
# Download the CSV file
|
160 |
+
files.download("product_details.csv")
|