krishuggingface commited on
Commit
464c27a
·
verified ·
1 Parent(s): e3b3af2

Upload model_pipeline.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. model_pipeline.py +160 -0
model_pipeline.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import requests
4
+ from io import BytesIO
5
+ from PIL import Image
6
+ import pandas as pd
7
+ import google.generativeai as genai
8
+ import matplotlib.pyplot as plt
9
+ from google.colab import files
10
+
11
+ # Set up the Generative AI API key
12
+ api_key = os.getenv('GOOGLE_API_KEY') # Use environment variable for API key security
13
+ genai.configure(api_key=api_key)
14
+
15
+ categories = ["Personal Care", "Household Care", "Dairy", "Staples", "Snacks and Beverages", "Packaged Food", "Fruits and Vegetables"]
16
+
17
+ # Step 1: Download image from URL
18
+ def download_image(image_url):
19
+ try:
20
+ response = requests.get(image_url)
21
+ response.raise_for_status() # Check if the request was successful
22
+ img = Image.open(BytesIO(response.content))
23
+ temp_path = "temp_image.jpg" # Temporary path
24
+ img.save(temp_path) # Save the image locally for further use
25
+ return temp_path
26
+ except Exception as e:
27
+ print(f"Error downloading image: {e}")
28
+ return None
29
+
30
+ # Step 2: Upload Image to the API
31
+ def upload_image(image_path):
32
+ sample_file = genai.upload_file(path=image_path, display_name="Product Image")
33
+ print(f"Uploaded file '{sample_file.display_name}' as: {sample_file.uri}")
34
+ return sample_file
35
+
36
+ # Step 3: Display Image
37
+ def display_image(image_path):
38
+ img = Image.open(image_path)
39
+ plt.imshow(img)
40
+ plt.axis('off')
41
+ plt.show()
42
+
43
+ # Step 4: Classify image to decide whether it contains fruits/vegetables or other products
44
+ def classify_image(sample_file):
45
+ model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest")
46
+ response = model.generate_content([sample_file, "Does this image contain fruits or vegetables? Answer 'yes' or 'no' only."])
47
+ classification = response.text.strip().lower()
48
+ return classification == "yes"
49
+
50
+ # Step 5: Predict freshness (for fruits and vegetables)
51
+ def predict_freshness(sample_file):
52
+ model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest")
53
+ response = model.generate_content([sample_file, "Can you provide the average freshness index (1-10) of the fruits/vegetables in the image. Just output the number."])
54
+ try:
55
+ freshness_index = int(response.text.strip())
56
+ return freshness_index
57
+ except ValueError:
58
+ print("Error: Unable to convert the response to an integer.")
59
+ return None
60
+
61
+ # Step 6: Generate product details (for other products)
62
+ def generate_product_details(sample_file):
63
+ model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest")
64
+ response = model.generate_content([sample_file,
65
+ f"Tell me the name of each product, its category among the following list of categories: {categories}, brand, MRP, manufacturer, expiry date, and quantity in the image. "
66
+ "Do not output anything else. Output format for each product: "
67
+ "Product Name: [Extracted Product name], Category: [Extracted Category], Brand: [Extracted Brand name], MRP: [Extracted MRP], Manufacturer: [Extracted Manufacturer name], "
68
+ "Expiry Date: [Extracted Expiry Date], Quantity: [Extracted Quantity]. Separate the details of each product with one newline character. "
69
+ "If some of the information is not available for a product, then output NA for that detail."
70
+ ])
71
+ return response.text.strip() if response else ""
72
+
73
+ # Step 7: Parse the response into a DataFrame
74
+ def parse_response_to_dataframe(response_text):
75
+ columns = ["Product Name", "Category", "Brand", "MRP", "Manufacturer", "Expiry Date", "Quantity"]
76
+ product_sections = response_text.split("\n")
77
+ products_list = []
78
+
79
+ for product_section in product_sections:
80
+ product_details = {col: "NA" for col in columns}
81
+ response_parts = product_section.split(", ")
82
+
83
+ for part in response_parts:
84
+ if "Product Name" in part:
85
+ product_details["Product Name"] = part.split(": ")[1]
86
+ elif "Category" in part:
87
+ product_details["Category"] = part.split(": ")[1]
88
+ elif "Brand" in part:
89
+ product_details["Brand"] = part.split(": ")[1]
90
+ elif "MRP" in part:
91
+ product_details["MRP"] = part.split(": ")[1]
92
+ elif "Manufacturer" in part:
93
+ product_details["Manufacturer"] = part.split(": ")[1]
94
+ elif "Expiry Date" in part:
95
+ product_details["Expiry Date"] = part.split(": ")[1]
96
+ elif "Quantity" in part:
97
+ product_details["Quantity"] = part.split(": ")[1]
98
+
99
+ products_list.append(product_details)
100
+
101
+ return pd.DataFrame(products_list, columns=columns)
102
+
103
+ # Step 8: Style the DataFrame for better display
104
+ def style_dataframe(df):
105
+ return df.style.set_properties(**{'text-align': 'center', 'border': '1px solid grey'}) .set_table_styles([{'selector': 'td', 'props': [('border', '1px solid grey')]}], overwrite=False)
106
+
107
+ # Step 9: Display results (image and styled DataFrame)
108
+ def display_results(image_path, styled_df):
109
+ display_image(image_path) # Display the image
110
+ print("\nProduct Details:\n")
111
+ display(styled_df) # Display the styled DataFrame
112
+
113
+ # Step 10: Save DataFrame to CSV
114
+ def save_dataframe_to_csv(df, file_name="product_details.csv"):
115
+ df.to_csv(file_name, index=False)
116
+ print(f"DataFrame saved to {file_name}")
117
+
118
+ # Combined Pipeline: Choose action based on image content
119
+ def combined_pipeline(image_source, is_url=False):
120
+ # Step 1: Download the image if it's a URL
121
+ if is_url:
122
+ image_path = download_image(image_source)
123
+ if not image_path:
124
+ print("Failed to download the image.")
125
+ return
126
+ else:
127
+ image_path = image_source
128
+
129
+ # Step 2: Upload the image
130
+ sample_file = upload_image(image_path)
131
+ if not sample_file:
132
+ print("Error uploading image.")
133
+ return
134
+
135
+ # Step 3: Classify whether the image contains fruits/vegetables
136
+ is_fruits_or_vegetables = classify_image(sample_file)
137
+
138
+ if is_fruits_or_vegetables:
139
+ print("Image contains fruits or vegetables. Predicting freshness...")
140
+ freshness_index = predict_freshness(sample_file)
141
+ if freshness_index is not None:
142
+ print(f"The predicted freshness index is: {freshness_index}")
143
+ else:
144
+ print("Failed to predict freshness.")
145
+ else:
146
+ print("Image contains products. Extracting details...")
147
+ response_text = generate_product_details(sample_file)
148
+ if not response_text:
149
+ print("No product details generated.")
150
+ return
151
+
152
+ df = parse_response_to_dataframe(response_text)
153
+ styled_df = style_dataframe(df)
154
+ display_results(image_path, styled_df)
155
+
156
+ # Save the DataFrame to a CSV file
157
+ save_dataframe_to_csv(df, "product_details.csv")
158
+
159
+ # Download the CSV file
160
+ files.download("product_details.csv")