--- tags: - spacy - token-classification language: - en model-index: - name: asc_annotator results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9152868695 - name: NER Recall type: recall value: 0.9177606178 - name: NER F Score type: f_score value: 0.9165220744 license: cc-by-sa-4.0 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.2,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [Kristopher Kyle, Hakyung Sung]() | ### Label Scheme
This model identifies and categorizes Argument Structure Constructions (ASCs). ASC types are marked on the main verb of the ASC. View label scheme (9 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `ATTR`, `CAUS_MOT`, `DITRAN`, `INTRAN_MOT`, `INTRAN_RES`, `INTRAN_S`, `PASSIVE`, `TRAN_RES`, `TRAN_S` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 91.65 | | `ENTS_P` | 91.53 | | `ENTS_R` | 91.78 | | `TRANSFORMER_LOSS` | 10943.24 | | `NER_LOSS` | 18950.33 |