--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_recognition results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.175 --- # emotion_recognition This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3469 - Accuracy: 0.175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 2.0721 | 0.125 | | No log | 2.0 | 20 | 2.0633 | 0.125 | | No log | 3.0 | 30 | 2.0038 | 0.125 | | No log | 4.0 | 40 | 1.9097 | 0.125 | | No log | 5.0 | 50 | 1.7412 | 0.125 | | No log | 6.0 | 60 | 1.6189 | 0.05 | | No log | 7.0 | 70 | 1.5343 | 0.0375 | | No log | 8.0 | 80 | 1.4746 | 0.0688 | | No log | 9.0 | 90 | 1.4330 | 0.0938 | | No log | 10.0 | 100 | 1.4130 | 0.15 | | No log | 11.0 | 110 | 1.3735 | 0.1062 | | No log | 12.0 | 120 | 1.3516 | 0.1062 | | No log | 13.0 | 130 | 1.2838 | 0.1375 | | No log | 14.0 | 140 | 1.3058 | 0.1187 | | No log | 15.0 | 150 | 1.3116 | 0.1 | | No log | 16.0 | 160 | 1.3269 | 0.1313 | | No log | 17.0 | 170 | 1.2624 | 0.1062 | | No log | 18.0 | 180 | 1.3285 | 0.1187 | | No log | 19.0 | 190 | 1.3490 | 0.1437 | | No log | 20.0 | 200 | 1.2592 | 0.1375 | | No log | 21.0 | 210 | 1.3600 | 0.0938 | | No log | 22.0 | 220 | 1.2835 | 0.1313 | | No log | 23.0 | 230 | 1.2842 | 0.1375 | | No log | 24.0 | 240 | 1.2840 | 0.1 | | No log | 25.0 | 250 | 1.2456 | 0.1313 | | No log | 26.0 | 260 | 1.2960 | 0.1562 | | No log | 27.0 | 270 | 1.3208 | 0.1375 | | No log | 28.0 | 280 | 1.3207 | 0.1375 | | No log | 29.0 | 290 | 1.2892 | 0.175 | | No log | 30.0 | 300 | 1.2837 | 0.1812 | | No log | 31.0 | 310 | 1.3548 | 0.1562 | | No log | 32.0 | 320 | 1.4371 | 0.1437 | | No log | 33.0 | 330 | 1.4219 | 0.1562 | | No log | 34.0 | 340 | 1.4033 | 0.1875 | | No log | 35.0 | 350 | 1.4505 | 0.1437 | | No log | 36.0 | 360 | 1.2975 | 0.1562 | | No log | 37.0 | 370 | 1.3906 | 0.1562 | | No log | 38.0 | 380 | 1.3547 | 0.1688 | | No log | 39.0 | 390 | 1.4706 | 0.1938 | | No log | 40.0 | 400 | 1.3595 | 0.1625 | | No log | 41.0 | 410 | 1.4236 | 0.1625 | | No log | 42.0 | 420 | 1.4180 | 0.1812 | | No log | 43.0 | 430 | 1.3993 | 0.1562 | | No log | 44.0 | 440 | 1.4066 | 0.1625 | | No log | 45.0 | 450 | 1.3760 | 0.175 | | No log | 46.0 | 460 | 1.4221 | 0.1812 | | No log | 47.0 | 470 | 1.3772 | 0.1625 | | No log | 48.0 | 480 | 1.4265 | 0.2 | | No log | 49.0 | 490 | 1.4716 | 0.1625 | | 0.6962 | 50.0 | 500 | 1.3917 | 0.1625 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3