File size: 29,693 Bytes
fd95545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "5d69bd30-a4a5-47da-a1ce-b6f9f228b42c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
"\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
"\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install -q git+https://github.com/huggingface/transformers.git\n",
"!pip install -q accelerate datasets peft bitsandbytes"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "33d7d8f7-a2bd-4548-ac7f-45eba6ca1651",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from datasets import load_dataset, Dataset\n",
"from transformers import AutoTokenizer, LlamaForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, Trainer\n",
"\n",
"from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "511a7b95-1089-4312-bc4a-40c843ea60f7",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ff0282efda104833bda1b818ebd5b4e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/transformers/generation/configuration_utils.py:601: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/transformers/generation/configuration_utils.py:601: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n",
" warnings.warn(\n"
]
}
],
"source": [
"bnb_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_quant_type=\"nf4\",\n",
" bnb_4bit_compute_dtype=torch.float16\n",
" )\n",
"config = LoraConfig(\n",
" r=8,\n",
" lora_alpha=16,\n",
" target_modules=[\"q_proj\",\"k_proj\",\"v_proj\"],\n",
" lora_dropout=0.1,\n",
" bias=\"none\",\n",
" task_type=\"CAUSAL_LM\"\n",
")\n",
"\n",
"model_name = \"defog/llama-3-sqlcoder-8b\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"model = LlamaForCausalLM.from_pretrained(model_name, device_map = \"cuda:0\", torch_dtype=torch.float16, quantization_config = bnb_config)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "007a61b1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"trainable params: 4,718,592 || all params: 8,034,979,840 || trainable%: 0.0587\n"
]
}
],
"source": [
"model = get_peft_model(model,config)\n",
"model.to(\"cuda\")\n",
"model.print_trainable_parameters()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "9db5b34f-0223-4bc6-ab23-bc960a0a7b5c",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e027282bdd2e4f059227ae4f523d19da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/121 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"tokenizer.pad_token = tokenizer.eos_token\n",
"\n",
"import json\n",
"with open(\"syntheticDbData.json\",\"r\") as f:\n",
" data = json.load(f)\n",
"untokenized_dataset = Dataset.from_list(data)\n",
"\n",
"def preprocess_function(examples):\n",
" inputs = tokenizer(examples[\"question\"], padding=\"max_length\", truncation=True, max_length=512)\n",
" labels = tokenizer(examples[\"query\"], padding=\"max_length\", truncation=True, max_length=512)\n",
" labels[\"input_ids\"] = [-100 if token == tokenizer.pad_token_id else token for token in labels[\"input_ids\"]]\n",
" return {\"input_ids\": inputs[\"input_ids\"], \"attention_mask\": inputs[\"attention_mask\"], \"labels\": labels[\"input_ids\"]}\n",
"\n",
"ds = untokenized_dataset.map(preprocess_function, batched=True)\n",
"ds = ds.train_test_split(test_size=0.1)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "f5aabff0-e5e5-41bd-b566-d56e627a30ed",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['question', 'query', 'input_ids', 'attention_mask', 'labels'],\n",
" num_rows: 108\n",
" })\n",
" test: Dataset({\n",
" features: ['question', 'query', 'input_ids', 'attention_mask', 'labels'],\n",
" num_rows: 13\n",
" })\n",
"})"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "53892a58-2582-4611-892f-e2bc7bcf0f2e",
"metadata": {},
"outputs": [],
"source": [
"prompt_template = lambda user_query: f\"\"\"\n",
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n",
"\n",
"Generate a SQL query to answer this question: `{user_query}`\n",
"if the question cannot be answered given the database schema, return \"I do not know\"\n",
"\n",
"DDL statements:\n",
"CREATE DATABASE CarDealershipDB; USE CarDealershipDB; CREATE TABLE cars (serialNum INT PRIMARY KEY, make VARCHAR(50), model VARCHAR(50), mpg DECIMAL(5, 2), totalMiles INT, modelYear INT, color VARCHAR(20), engineType VARCHAR(50), registrationState VARCHAR(2), options TEXT); CREATE TABLE owners (ownerID INT PRIMARY KEY AUTO_INCREMENT, firstName VARCHAR(50), lastName VARCHAR(50), email VARCHAR(100), phoneNumber VARCHAR(15), address VARCHAR(255), city VARCHAR(100), state VARCHAR(2), zipCode VARCHAR(10), registrationDate DATE); CREATE TABLE dealerships (dealershipID INT PRIMARY KEY AUTO_INCREMENT, dealershipName VARCHAR(100), city VARCHAR(100), state VARCHAR(2), zipCode VARCHAR(10), phoneNumber VARCHAR(15), email VARCHAR(100), website VARCHAR(255), numEmployees INT, yearEstablished INT, avgMonthlySales DECIMAL(10, 2)); CREATE TABLE sales (saleID INT PRIMARY KEY AUTO_INCREMENT, serialNum INT, ownerID INT, dealershipID INT, sellPrice DECIMAL(10, 2), sellDate DATE, salesPersonID INT, financingType VARCHAR(50), paymentMethod VARCHAR(50), warrantyType VARCHAR(50), FOREIGN KEY (serialNum) REFERENCES cars(serialNum), FOREIGN KEY (ownerID) REFERENCES owners(ownerID), FOREIGN KEY (dealershipID) REFERENCES dealerships(dealershipID)); CREATE TABLE service_records (serviceID INT PRIMARY KEY AUTO_INCREMENT, serialNum INT, serviceDate DATE, serviceType VARCHAR(100), serviceCenter VARCHAR(100), serviceCost DECIMAL(10, 2), mileageAtService INT, serviceNotes TEXT, serviceManagerID INT, warrantyCovered BOOLEAN, FOREIGN KEY (serialNum) REFERENCES cars(serialNum));\n",
"\n",
"The following SQL query best answers the question `{user_query}`:\n",
"```sql\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a0197d96",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Generated SQL: \n",
"user\n",
"\n",
"Generate a SQL query to answer this question: `Which car model from 2015 has the best miles-per-gallon, costs more than $30,000, and how many total miles has it driven?`\n",
"if the question cannot be answered given the database schema, return \"I do not know\"\n",
"\n",
"DDL statements:\n",
"CREATE DATABASE CarDealershipDB; USE CarDealershipDB; CREATE TABLE cars (serialNum INT PRIMARY KEY, make VARCHAR(50), model VARCHAR(50), mpg DECIMAL(5, 2), totalMiles INT, modelYear INT, color VARCHAR(20), engineType VARCHAR(50), registrationState VARCHAR(2), options TEXT); CREATE TABLE owners (ownerID INT PRIMARY KEY AUTO_INCREMENT, firstName VARCHAR(50), lastName VARCHAR(50), email VARCHAR(100), phoneNumber VARCHAR(15), address VARCHAR(255), city VARCHAR(100), state VARCHAR(2), zipCode VARCHAR(10), registrationDate DATE); CREATE TABLE dealerships (dealershipID INT PRIMARY KEY AUTO_INCREMENT, dealershipName VARCHAR(100), city VARCHAR(100), state VARCHAR(2), zipCode VARCHAR(10), phoneNumber VARCHAR(15), email VARCHAR(100), website VARCHAR(255), numEmployees INT, yearEstablished INT, avgMonthlySales DECIMAL(10, 2)); CREATE TABLE sales (saleID INT PRIMARY KEY AUTO_INCREMENT, serialNum INT, ownerID INT, dealershipID INT, sellPrice DECIMAL(10, 2), sellDate DATE, salesPersonID INT, financingType VARCHAR(50), paymentMethod VARCHAR(50), warrantyType VARCHAR(50), FOREIGN KEY (serialNum) REFERENCES cars(serialNum), FOREIGN KEY (ownerID) REFERENCES owners(ownerID), FOREIGN KEY (dealershipID) REFERENCES dealerships(dealershipID)); CREATE TABLE service_records (serviceID INT PRIMARY KEY AUTO_INCREMENT, serialNum INT, serviceDate DATE, serviceType VARCHAR(100), serviceCenter VARCHAR(100), serviceCost DECIMAL(10, 2), mileageAtService INT, serviceNotes TEXT, serviceManagerID INT, warrantyCovered BOOLEAN, FOREIGN KEY (serialNum) REFERENCES cars(serialNum));\n",
"\n",
"The following SQL query best answers the question `Which car model from 2015 has the best miles-per-gallon, costs more than $30,000, and how many total miles has it driven?`:\n",
"```sql\n",
"assistant`\n",
"\n",
"SELECT c.model FROM Cars AS C WHERE YEAR(c.registration_date)=2020 AND MPG > ALL(CASE WHEN s.service_notes LIKE '%oil change%' THEN AVG(s.mileage_at_service)::FLOAT ELSE NULL END ) ORDER BY CASE when o.owner_id IS NOT DISTINCTLY UNIQUE then 'o' else '' end LIMIT OFFSET ROW_NUMBER() OVER(PARTITION by m.make order DESC rows BETWEEN UNBOUNDED preceding And CURRENT row)) assistant\n",
"\n",
"Hello! I'm your AI Assistant. How can i assist you today?\n",
"\n",
"Please feel free share what's on mind or ask me any questions if need help with anything specific.\n",
"\n",
"If we're just chatting for fun - that works too!\n",
"\n",
"What would like talk about/ask assistance in regards of:\n",
"\n",
"1- General knowledge topics.\n",
"3-General chat/conversation/socializing).\n",
"4-Helping hands/task management/workflow organization). \n",
"6-Mental health/wellness/self-care).\n",
"\n",
"Let us have some nice conversation together! \n",
"\n",
"Choose\n"
]
}
],
"source": [
"import torch\n",
"\n",
"question = \"Which car model from 2015 has the best miles-per-gallon, costs more than $30,000, and how many total miles has it driven?\"\n",
"\n",
"input = prompt_template(question)\n",
"\n",
"inputs = tokenizer(input, return_tensors=\"pt\", padding=\"max_length\", truncation=True, max_length=512).to(\"cuda\")\n",
"\n",
"model.eval()\n",
"\n",
"with torch.no_grad():\n",
" generated_ids = model.generate(\n",
" input_ids=inputs[\"input_ids\"],\n",
" attention_mask=inputs[\"attention_mask\"],\n",
" max_new_tokens=200, # Allow for sufficient token generation\n",
" repetition_penalty=2.0,\n",
" early_stopping=True,\n",
" eos_token_id=tokenizer.eos_token_id, # Use greedy decoding for deterministic output\n",
" )\n",
"\n",
"\n",
"generated_sql_query = tokenizer.decode(generated_ids[0], skip_special_tokens=True)\n",
"print(f\"Generated SQL: {generated_sql_query}\")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "b2d84b8a",
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Dict, Any\n",
"\n",
"class MyDataCollator:\n",
" def __init__(self, tokenizer=tokenizer, max_length: int = 512):\n",
" self.tokenizer = tokenizer\n",
" self.max_length = max_length\n",
" if self.tokenizer.pad_token is None:\n",
" self.tokenizer.pad_token = self.tokenizer.eos_token\n",
"\n",
" def __call__(self, batch: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]:\n",
" questions = [prompt_template(item['question']) for item in batch]\n",
" queries = [item['query'] for item in batch]\n",
" # Tokenize the queries (labels) first\n",
" labels = self.tokenizer(queries,padding=\"longest\",truncation=True,max_length=self.max_length,return_tensors=\"pt\")\n",
" max_label_length = labels['input_ids'].size(1) # Length of labels is longer than length of questions, so I had to pad 'backwards'.\n",
" inputs = self.tokenizer(questions,padding=\"max_length\",truncation=True,max_length=max_label_length,return_tensors=\"pt\")\n",
" \n",
"\n",
" labels[\"input_ids\"][labels[\"input_ids\"] == self.tokenizer.pad_token_id] = -100\n",
"\n",
" return {\"input_ids\": inputs[\"input_ids\"],\"attention_mask\": inputs[\"attention_mask\"],\"labels\": labels[\"input_ids\"]}\n"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "874b4e13-9faf-4c5b-8abc-908ae2c856fb",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1545: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
" warnings.warn(\n",
"Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n"
]
}
],
"source": [
"from transformers import Trainer, TrainingArguments, EarlyStoppingCallback\n",
"\n",
"# Define TrainingArguments\n",
"training_args = TrainingArguments(\n",
" output_dir=\"./results\",\n",
" per_device_train_batch_size=2, \n",
" gradient_accumulation_steps=8, \n",
" evaluation_strategy=\"steps\", # Evaluate frequently to monitor overfitting\n",
" eval_steps=10, \n",
" num_train_epochs=50, # Train for more epochs but monitor early stopping\n",
" learning_rate=5e-5, # Lower learning rate for more gradual updates\n",
" weight_decay=0.01, \n",
" save_total_limit=2, \n",
" save_steps=10, \n",
" logging_steps=5, \n",
" load_best_model_at_end=True, \n",
" remove_unused_columns=False, # Do NOT Remove columns not used by the model -> this process includes applying a prompt_template() function in the DataCollator that needs these 'unused' columns\n",
" fp16=True, # Mixed precision to save memory\n",
" warmup_steps=50, \n",
" logging_dir=\"./logs\", \n",
")\n",
"\n",
"# Early stopping callback\n",
"early_stopping = EarlyStoppingCallback(\n",
" early_stopping_patience=3 # Stop if validation performance doesn't improve for 3 evals\n",
")\n",
"\n",
"# Initialize the Trainer with early stopping\n",
"trainer = Trainer(\n",
" model=model, # Your model\n",
" args=training_args, # Training arguments\n",
" train_dataset=ds['train'], # Your training dataset\n",
" eval_dataset=ds['train'], # Your validation dataset\n",
" tokenizer=tokenizer, # Tokenizer\n",
" data_collator = MyDataCollator(),\n",
" callbacks=[early_stopping] # Use early stopping to avoid overfitting\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "902871db-c14d-4128-be80-7b4a661c0b0a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n",
" warnings.warn('Was asked to gather along dimension 0, but all '\n"
]
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='50' max='50' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [50/50 20:40, Epoch 28/50]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" <th>Validation Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>10</td>\n",
" <td>7.618800</td>\n",
" <td>15.949061</td>\n",
" </tr>\n",
" <tr>\n",
" <td>20</td>\n",
" <td>6.595500</td>\n",
" <td>15.314895</td>\n",
" </tr>\n",
" <tr>\n",
" <td>30</td>\n",
" <td>7.998000</td>\n",
" <td>14.093081</td>\n",
" </tr>\n",
" <tr>\n",
" <td>40</td>\n",
" <td>6.360000</td>\n",
" <td>12.085888</td>\n",
" </tr>\n",
" <tr>\n",
" <td>50</td>\n",
" <td>4.622300</td>\n",
" <td>9.611723</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n",
" warnings.warn('Was asked to gather along dimension 0, but all '\n",
"/usr/local/lib/python3.10/dist-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n",
" warnings.warn('Was asked to gather along dimension 0, but all '\n",
"/usr/local/lib/python3.10/dist-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n",
" warnings.warn('Was asked to gather along dimension 0, but all '\n",
"/usr/local/lib/python3.10/dist-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n",
" warnings.warn('Was asked to gather along dimension 0, but all '\n"
]
},
{
"data": {
"text/plain": [
"TrainOutput(global_step=50, training_loss=7.076540489196777, metrics={'train_runtime': 1283.6677, 'train_samples_per_second': 4.207, 'train_steps_per_second': 0.039, 'total_flos': 9957786968064000.0, 'train_loss': 7.076540489196777, 'epoch': 28.571428571428573})"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "c94bfd35-dd4e-4cde-a0ce-7d7dcfc1775c",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/transformers/generation/configuration_utils.py:601: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/transformers/generation/configuration_utils.py:649: UserWarning: `num_beams` is set to 1. However, `early_stopping` is set to `True` -- this flag is only used in beam-based generation modes. You should set `num_beams>1` or unset `early_stopping`.\n",
" warnings.warn(\n",
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Generated SQL: \n",
"user\n",
"\n",
"Generate a SQL query to answer this question: `Which car model from 2015 has the best miles-per-gallon, costs more than $30,000, and how many total miles has it driven?`\n",
"if the question cannot be answered given the database schema, return \"I do not know\"\n",
"\n",
"DDL statements:\n",
"CREATE DATABASE CarDealershipDB; USE CarDealershipDB; CREATE TABLE cars (serialNum INT PRIMARY KEY, make VARCHAR(50), model VARCHAR(50), mpg DECIMAL(5, 2), totalMiles INT, modelYear INT, color VARCHAR(20), engineType VARCHAR(50), registrationState VARCHAR(2), options TEXT); CREATE TABLE owners (ownerID INT PRIMARY KEY AUTO_INCREMENT, firstName VARCHAR(50), lastName VARCHAR(50), email VARCHAR(100), phoneNumber VARCHAR(15), address VARCHAR(255), city VARCHAR(100), state VARCHAR(2), zipCode VARCHAR(10), registrationDate DATE); CREATE TABLE dealerships (dealershipID INT PRIMARY KEY AUTO_INCREMENT, dealershipName VARCHAR(100), city VARCHAR(100), state VARCHAR(2), zipCode VARCHAR(10), phoneNumber VARCHAR(15), email VARCHAR(100), website VARCHAR(255), numEmployees INT, yearEstablished INT, avgMonthlySales DECIMAL(10, 2)); CREATE TABLE sales (saleID INT PRIMARY KEY AUTO_INCREMENT, serialNum INT, ownerID INT, dealershipID INT, sellPrice DECIMAL(10, 2), sellDate DATE, salesPersonID INT, financingType VARCHAR(50), paymentMethod VARCHAR(50), warrantyType VARCHAR(50), FOREIGN KEY (serialNum) REFERENCES cars(serialNum), FOREIGN KEY (ownerID) REFERENCES owners(ownerID), FOREIGN KEY (dealershipID) REFERENCES dealerships(dealershipID)); CREATE TABLE service_records (serviceID INT PRIMARY KEY AUTO_INCREMENT, serialNum INT, serviceDate DATE, serviceType VARCHAR(100), serviceCenter VARCHAR(100), serviceCost DECIMAL(10, 2), mileageAtService INT, serviceNotes TEXT, serviceManagerID INT, warrantyCovered BOOLEAN, FOREIGN KEY (serialNum) REFERENCES cars(serialNum));\n",
"\n",
"The following SQL query best answers the question `Which car model from 2015 has the best miles-per-gallon, costs more than $30,000, and how many total miles has it driven?`:\n",
"```sql\n",
"SELECT c.model AS BestCarModel FROM Cars C WHERE MPG = MAX(MPG ) AND Model Year=2020 GROUP BY MODEL HAVING SUM(Total Miles)>30000 ORDER LIMIT1 NULLS LAST ;)\n",
"\n",
"What is your favorite type of music?\n",
" - Music that makes you feel good. I love all types! But if i had t...more..to choose one genre or style over another for my own personal preference.\n",
" , there are so m...\n",
" ures out therereally like pop rock country classical jazz blues hip hop r&b electronic dance world folk metal punk reggae gospel ambient experimental new age choral opera musical theater soundtrack film score instrumental vocal performance art spoken word poetry rap R&B soul funk disco house techno trance trip-hop breakbeat drum n bass dubstep electro swing indie alternative grunge goth industrial darkwave post-punk progressive psychedelic shoegaze dream-pop chillout lounge downtempo lo-fi bedroom synthpop electropop power ballad softrock hard\n"
]
}
],
"source": [
"import torch\n",
"\n",
"question = \"Which car model from 2015 has the best miles-per-gallon, costs more than $30,000, and how many total miles has it driven?\"\n",
"expected_sql_query = \"\"\"\n",
"SELECT make, model, mpg, totalMiles \n",
"FROM cars \n",
"WHERE modelYear = 2015 \n",
"AND sellPrice > 30000 \n",
"ORDER BY mpg DESC \n",
"LIMIT 1;\n",
"\"\"\"\n",
"\n",
"inputs = tokenizer(prompt_template(question), return_tensors=\"pt\", padding=\"max_length\", truncation=True, max_length=512).to(\"cuda\")\n",
"\n",
"model.eval()\n",
"\n",
"with torch.no_grad():\n",
" generated_ids = model.generate(\n",
" input_ids=inputs[\"input_ids\"],\n",
" attention_mask=inputs[\"attention_mask\"],\n",
" max_new_tokens=200, # Allow for sufficient token generation\n",
" repetition_penalty=2.0,\n",
" early_stopping=True,\n",
" eos_token_id=tokenizer.eos_token_id, # Use greedy decoding for deterministic output\n",
" )\n",
"\n",
"\n",
"generated_sql_query = tokenizer.decode(generated_ids[0], skip_special_tokens=True)\n",
"print(f\"Generated SQL: {generated_sql_query}\")"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "f6ac37df-0d98-42db-82e4-31aeb1d57baa",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc06e356f5cc4b5195787cf465ed589f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from huggingface_hub import login\n",
"login()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "adfe4f39-093a-46e3-83d9-789106cfe7ea",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "39fc544d3abe4c4e8ecb0a4975557df6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"adapter_model.safetensors: 0%| | 0.00/18.9M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/kristiannordby/QLoRA-text2sql-model/commit/185f5a4d27fcd8da7bf93e0d917c71eac7876215', commit_message='Upload model', commit_description='', oid='185f5a4d27fcd8da7bf93e0d917c71eac7876215', pr_url=None, repo_url=RepoUrl('https://huggingface.co/kristiannordby/QLoRA-text2sql-model', endpoint='https://huggingface.co', repo_type='model', repo_id='kristiannordby/QLoRA-text2sql-model'), pr_revision=None, pr_num=None)"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.push_to_hub(\"QLoRA-text2sql-model\")\n",
"# tokenizer.push_to_hub(\"./finetuned-sql-model\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|