krlvi commited on
Commit
1743af7
·
1 Parent(s): 41c64d3
README.md CHANGED
@@ -1,3 +1,131 @@
1
  ---
2
  license: agpl-3.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: agpl-3.0
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+
10
  ---
11
+
12
+ # sentence-msmarco-nlpl-code-search-net-code-x-glue
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
+
16
+ <!--- Describe your model here -->
17
+ It has been trained on the with the [code_search_net](https://huggingface.co/datasets/code_search_net) and [code_x_glue_tc_text_to_code](https://huggingface.co/datasets/code_x_glue_tc_text_to_code) datasets sequentially.
18
+
19
+ ## Usage (Sentence-Transformers)
20
+
21
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
22
+
23
+ ```
24
+ pip install -U sentence-transformers
25
+ ```
26
+
27
+ Then you can use the model like this:
28
+
29
+ ```python
30
+ from sentence_transformers import SentenceTransformer
31
+ sentences = ["This is an example sentence", "Each sentence is converted"]
32
+
33
+ model = SentenceTransformer('{MODEL_NAME}')
34
+ embeddings = model.encode(sentences)
35
+ print(embeddings)
36
+ ```
37
+
38
+
39
+
40
+ ## Usage (HuggingFace Transformers)
41
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
42
+
43
+ ```python
44
+ from transformers import AutoTokenizer, AutoModel
45
+ import torch
46
+
47
+
48
+ #Mean Pooling - Take attention mask into account for correct averaging
49
+ def mean_pooling(model_output, attention_mask):
50
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
51
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
52
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
53
+
54
+
55
+ # Sentences we want sentence embeddings for
56
+ sentences = ['This is an example sentence', 'Each sentence is converted']
57
+
58
+ # Load model from HuggingFace Hub
59
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
60
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
61
+
62
+ # Tokenize sentences
63
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
64
+
65
+ # Compute token embeddings
66
+ with torch.no_grad():
67
+ model_output = model(**encoded_input)
68
+
69
+ # Perform pooling. In this case, mean pooling.
70
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
71
+
72
+ print("Sentence embeddings:")
73
+ print(sentence_embeddings)
74
+ ```
75
+
76
+
77
+
78
+ ## Evaluation Results
79
+
80
+ <!--- Describe how your model was evaluated -->
81
+
82
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
83
+
84
+
85
+ ## Training
86
+ The model was trained with the parameters:
87
+
88
+ **DataLoader**:
89
+
90
+ `torch.utils.data.dataloader.DataLoader` of length 2084 with parameters:
91
+ ```
92
+ {'batch_size': 48, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
93
+ ```
94
+
95
+ **Loss**:
96
+
97
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
98
+ ```
99
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
100
+ ```
101
+
102
+ Parameters of the fit()-Method:
103
+ ```
104
+ {
105
+ "epochs": 3,
106
+ "evaluation_steps": 0,
107
+ "evaluator": "NoneType",
108
+ "max_grad_norm": 1,
109
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
110
+ "optimizer_params": {
111
+ "lr": 2e-05
112
+ },
113
+ "scheduler": "WarmupLinear",
114
+ "steps_per_epoch": null,
115
+ "warmup_steps": 1000,
116
+ "weight_decay": 0.01
117
+ }
118
+ ```
119
+
120
+
121
+ ## Full Model Architecture
122
+ ```
123
+ SentenceTransformer(
124
+ (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: BertModel
125
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
126
+ )
127
+ ```
128
+
129
+ ## Citing & Authors
130
+
131
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/output/train_bi-encoder-mnrl-sentence-transformers-msmarco-bert-base-dot-v5-2022-11-16_23-17-58/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.24.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79e3fbe83701dedcbd053cc1d4c359cb7547ca2fd640a1aab2dfe547b49262bb
3
+ size 437998385
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 300,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_basic_tokenize": true,
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "name_or_path": "/workspace/output/train_bi-encoder-mnrl-sentence-transformers-msmarco-bert-base-dot-v5-2022-11-16_23-17-58/",
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "special_tokens_map_file": "/bos/tmp0/luyug/outputs/condenser/models/l2-s6-km-L128-e8-lr1e-4-b256/special_tokens_map.json",
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "BertTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff