File size: 29,080 Bytes
b5f2446 4b23a21 b5f2446 4b23a21 b5f2446 6f6bdcf b5f2446 2af3ccc b5f2446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 |
{
"cells": [
{
"cell_type": "markdown",
"id": "9cfae24c-01e5-480b-ad5e-2aec772e0983",
"metadata": {},
"source": [
"### Checking for availability of GPUs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8229d250-fd3c-4ee6-ba55-dcfbeba9b06e",
"metadata": {},
"outputs": [],
"source": [
"!nvidia-smi"
]
},
{
"cell_type": "markdown",
"id": "8b9081a3-e5bb-45c5-a88b-4ef4e0490574",
"metadata": {},
"source": [
"### Installing the necessary libraries\n",
"Please note that this installation step might fail if no GPU is available."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a9c4d533-ec98-4b0f-a263-c3c8f649547e",
"metadata": {},
"outputs": [],
"source": [
"!pip install --upgrade pip\n",
"!pip install -q -U bitsandbytes\n",
"!pip install -q -U git+https://github.com/huggingface/transformers.git\n",
"!pip install -q -U git+https://github.com/huggingface/peft.git\n",
"!pip install -q -U git+https://github.com/huggingface/accelerate.git\n",
"!pip install -q trl xformers wandb datasets einops gradio sentencepiece\n",
"!pip install flash-attn"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3425af9b-12cd-46e5-80f5-30fd2f7fed67",
"metadata": {},
"outputs": [],
"source": [
"# Libraries used for analyzing the dataset\n",
"!pip install matplotlib\n",
"!pip install statistics"
]
},
{
"cell_type": "markdown",
"id": "b0ddd32e-2c21-4abd-8e5c-db85efb194ab",
"metadata": {},
"source": [
"### Importing the necessary libraries and preparation\n",
"Here, we set the repos of the base model (to be fine-tuned), the dataset (on which the base model will be fine-tuned) and the output model (the base model fine-tuned on our custom dataset)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1eb19e95-6c02-45a5-99a3-5bb966ed2d0b",
"metadata": {},
"outputs": [],
"source": [
"from transformers import (\n",
" AutoModelForCausalLM, \n",
" AutoTokenizer, \n",
" BitsAndBytesConfig,\n",
" HfArgumentParser,\n",
" TrainingArguments,\n",
" pipeline, \n",
" logging, \n",
" TextStreamer,\n",
" GenerationConfig\n",
")\n",
"from peft import (\n",
" LoraConfig, \n",
" PeftModel, \n",
" prepare_model_for_kbit_training, \n",
" get_peft_model\n",
")\n",
"import os\n",
"import torch\n",
"import wandb\n",
"import platform\n",
"import warnings\n",
"from datasets import load_dataset\n",
"from trl import SFTTrainer\n",
"from huggingface_hub import notebook_login\n",
"\n",
"# Base model\n",
"base_model = \"mistralai/Mistral-Nemo-Instruct-2407\"\n",
"\n",
"# Custom dataset and new model to be created\n",
"dataset_name = \"dataset/repo\"\n",
"\n",
"# New model to be created\n",
"new_model = \"model/repo\"\n",
"\n",
"# Ignore all warnings\n",
"warnings.filterwarnings(\"ignore\")"
]
},
{
"cell_type": "markdown",
"id": "d4c91d86-47fc-4ff4-bac4-9a2006138d0a",
"metadata": {},
"source": [
"### Logging into Hugging Face\n",
"Since both our dataset and the model we want to create are (meant to be) private, it is better to already log into our HF account."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7593199-8ec5-433b-b195-0393a8ebe2eb",
"metadata": {},
"outputs": [],
"source": [
"# We already log into our own hugging face hub with a 'WRITE' token\n",
"!huggingface-cli login --token MY_HF_WRITE_TOKEN"
]
},
{
"cell_type": "markdown",
"id": "6effec67-70fa-4362-b0e2-6e9adb80ae18",
"metadata": {},
"source": [
"*Remark:* an alternative is to simply write\n",
"```\n",
"notebook_login()\n",
"```\n",
"and then type the HF 'WRITE' token.\n",
"\n",
"### Loading the dataset\n",
"\n",
"Our dataset here is of the form:"
]
},
{
"cell_type": "markdown",
"id": "e96f2849-3059-42d4-8753-abe2c2fffdf1",
"metadata": {},
"source": [
"```json\n",
" [\n",
" {\n",
" \"source\": \"Chat no 1-1\",\n",
" \"text\": [\n",
" {\"role\": \"user\", \"content\": \"My system prompt\\n\\nQuestion 11\"},\n",
" {\"role\": \"assistant\", \"content\": \"Answer 11\"}\n",
" ]\n",
" },\n",
" {\n",
" \"source\": \"Chat no 1-2\",\n",
" \"text\": [\n",
" {\"role\": \"user\", \"content\": \"Question 11\"},\n",
" {\"role\": \"assistant\", \"content\": \"Answer 11\"},\n",
" {\"role\": \"user\", \"content\": \"My system prompt\\n\\nQuestion 12\"},\n",
" {\"role\": \"assistant\", \"content\": \"Answer 12\"}\n",
" ]\n",
" },\n",
" {\n",
" \"source\": \"Chat no 2\",\n",
" \"text\": [\n",
" {\"role\": \"user\", \"content\": \"My system prompt\\n\\nQuestion 21\"},\n",
" {\"role\": \"assistant\", \"content\": \"Answer 21\"}\n",
" ]\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "647c3363-8791-4e21-b3f5-a3bc08af4d74",
"metadata": {},
"source": [
"We will convert it later on using the chat template that comes with the tokenizer.\n",
"\n",
"*Remark:* Note that the system prompt is included in the very last user message of each \"chats\" that make up the dataset. This is because, even though Nemo supports system prompts (as per the Jinja code given after executing ```tokenizer.chat_template```), there seem to be an issue with the tokenizer in this respect. It will produce the same effect anyway (the model is supposed to be aware with this way of doing)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "374bf038-86d6-4b82-b223-4f0a2e4cb9c4",
"metadata": {},
"outputs": [],
"source": [
"# Loading the dataset\n",
"dataset = load_dataset(dataset_name, split=\"train\", encoding='latin-1')\n",
"\n",
"# We \"shuffle\" the dataset\n",
"dataset = dataset.shuffle()\n",
"\n",
"dataset[\"text\"][0]"
]
},
{
"cell_type": "markdown",
"id": "070da9d3-fb2d-466e-a423-c39beedc019a",
"metadata": {},
"source": [
"### Loading the base model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9db212ec-902e-4d30-bfb5-a04148c729da",
"metadata": {},
"outputs": [],
"source": [
"# The quantization to apply to the base model\n",
"bnb_config = BitsAndBytesConfig(\n",
" load_in_4bit= True,\n",
" bnb_4bit_quant_type= \"nf4\",\n",
" bnb_4bit_compute_dtype= torch.bfloat16,\n",
" bnb_4bit_use_double_quant= False,\n",
")\n",
"\n",
"# We load quantized base model\n",
"model = AutoModelForCausalLM.from_pretrained(\n",
" base_model,\n",
" quantization_config=bnb_config,\n",
" device_map=\"auto\",\n",
" attn_implementation=\"flash_attention_2\"\n",
")\n",
"\n",
"model.config.use_cache = False\n",
"model.config.pretraining_tp = 1\n",
"model.gradient_checkpointing_enable()"
]
},
{
"cell_type": "markdown",
"id": "6c9c2f0e-40ae-4579-953c-cd021ca2291d",
"metadata": {},
"source": [
"### Loading the tokenizer"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0f33deef-9b44-4717-9f85-ee0956a81443",
"metadata": {},
"outputs": [],
"source": [
"# Load tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)\n",
"tokenizer.padding_side = 'right'"
]
},
{
"cell_type": "markdown",
"id": "2e967f58-e84a-4672-9754-a700f5900a87",
"metadata": {},
"source": [
"To avoid breaking French punctuation rules, we have to make sure that the following defaults as ```False```."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e1daa6cd-c681-4973-b786-471bdfe75517",
"metadata": {},
"outputs": [],
"source": [
"tokenizer.clean_up_tokenization_spaces"
]
},
{
"cell_type": "markdown",
"id": "112c4c11-6472-4703-a94f-349194155466",
"metadata": {},
"source": [
"We now have to set the PAD token. But, first of all, we need to check whether the tokenizer already has one."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa1d2581-c15e-445f-acba-bd3a40634ca3",
"metadata": {},
"outputs": [],
"source": [
"print(tokenizer.pad_token)"
]
},
{
"cell_type": "markdown",
"id": "f8773667-e68c-4769-8898-23e76b624b71",
"metadata": {},
"source": [
"If not, then we have to set it:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5f8c5e22-719e-48c2-91a8-1028650f5df3",
"metadata": {},
"outputs": [],
"source": [
"tokenizer.pad_token = tokenizer.unk_token"
]
},
{
"cell_type": "markdown",
"id": "da41f925-dc4b-40f6-80b4-f29b2fb87891",
"metadata": {},
"source": [
"*Remark:* The value set for the PAD token might differ from a model to another. Sometimes ```<pad>``` or ```[pad]``` might be a better choice. The best way for choosing the right value is to check the tokenizer's vocabulary.\n",
"\n",
"Let's check that it worked:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e5cd53fa-3fa1-4cdd-85a9-2109fa346d29",
"metadata": {},
"outputs": [],
"source": [
"print(tokenizer.pad_token)"
]
},
{
"cell_type": "markdown",
"id": "4012f9c9-86b3-42b8-8049-1c920602552d",
"metadata": {},
"source": [
"Now, let's add the PAD and EOS tokens to the tokenizer:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1a91233-10dd-409a-adae-2ccb084c5965",
"metadata": {},
"outputs": [],
"source": [
"tokenizer.add_pad_token = True\n",
"tokenizer.add_eos_token = True"
]
},
{
"cell_type": "markdown",
"id": "99376e19-5215-4a4b-b266-4c6a97f3764d",
"metadata": {},
"source": [
"### Formatting the dataset\n",
"Having loaded and configured the tokenizer, we can now apply the appropriate chat template to our dataset, namely:\n",
"```\n",
"<s>[INST] My first question. [/INST]The model's answer to my question.</s> [INST] A follow-up question. [/INST]The model's answer to my follow-up question.</s>\n",
"```\n",
"Note that, to avoid having extra/undesired \"Assistant:\" or \"User:\" tags placed at the end of each instances of the dataset, it is necessary to specify ```add_generation_prompt=False``` when applying the chat template."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2fbbaa34-5e03-4432-a20d-0b0032cb27f5",
"metadata": {},
"outputs": [],
"source": [
"from datasets import Dataset\n",
"import json\n",
"\n",
"# Creating a list with elements of the dataset properly formatted\n",
"formatted_dataset = [tokenizer.apply_chat_template(conv, tokenize=False, add_generation_prompt=False)[3:] for conv in dataset[\"text\"]]\n",
"\n",
"# Converted dataset with appropriate chat template\n",
"ds = Dataset.from_dict({\"text\": formatted_dataset})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9e85540-727e-43ec-a30f-26ecb8ca79aa",
"metadata": {},
"outputs": [],
"source": [
"# Let's have a look\n",
"print(ds[\"text\"][100])"
]
},
{
"cell_type": "markdown",
"id": "032888d6-44c2-434f-8ec6-3b3fe63b88a4",
"metadata": {},
"source": [
"*Remark:* We added ```[3:]``` to elements of ```formatted_dataset``` in order to remove the very first ```<s>``` (BOS) token because the tokenizer adds it automatically. Otherwise we would have two BOS at the beginning, which might bring some trouble. To double check it suffices to decode the encoded data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "391a83bd-1da0-4021-a2dc-35cf1788196a",
"metadata": {},
"outputs": [],
"source": [
"print(tokenizer.decode(tokenizer.encode(ds[\"text\"][35])))"
]
},
{
"cell_type": "markdown",
"id": "956ff7d6-40c7-4d58-bb38-0304631cd73f",
"metadata": {},
"source": [
"The very first BOS and the very last EOS have indeed been added by the tokenizer, matching the chat template!"
]
},
{
"cell_type": "markdown",
"id": "33a56f40-bf0c-41d3-bb13-44484ca5924b",
"metadata": {},
"source": [
"### Rapid analysis of the tokenized dataset\n",
"Unfortunately, LLMs have limited (yet modulable) context windows, so it is worth analyzing our dataset in order to know which context length better fits our needs. Indeed, later on we will need to specify the length of the inputs used for fine-tuning (i.e. to set ```max_seq_length``` in the ```SFTTrainer()```). \n",
"\n",
"Concretely, we will have a look at the distribution of the length of each tokenized example. We will first (i) compute the list of all such tokenized examples and then (ii) plot it to analyze it more conveniently."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "785b1c8d-bfcb-4944-a7bf-3e91cc25940d",
"metadata": {},
"outputs": [],
"source": [
"# We compute the list of all the lengths of the tokenized examples\n",
"length_examples = []\n",
"for i in range(len(ds)):\n",
" size = len(tokenizer.encode(ds[\"text\"][i]))\n",
" length_examples.append(size)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f059aff-f2f5-4bd5-a0f3-3bb3fc7a252f",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"from collections import Counter\n",
"\n",
"# We count the occurrences of each integer\n",
"counter = Counter(length_examples)\n",
"\n",
"# We get the integers and their corresponding counts\n",
"x = list(counter.keys())\n",
"y = list(counter.values())\n",
"\n",
"# We sort the integers (x-axis)\n",
"x_sorted, y_sorted = zip(*sorted(zip(x, y)))\n",
"\n",
"# We plot the values\n",
"plt.bar(x_sorted, y_sorted)\n",
"plt.xlabel('Number of tokens')\n",
"plt.ylabel('Number of Occurrences')\n",
"plt.title('Distribution of lengths of tokenized dataset examples')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "f9f6efb5-1970-495a-a2c3-088cd1beb62e",
"metadata": {},
"source": [
"To understand more precisely the dataset, we can calculate, say, the $90$th percentile value of the lengths of our tokenized examples. Roughly speaking, this means determining, for any $p\\in(0,1)$, the smallest integer $N=N(p)\\in\\mathbb{N}$ such that\n",
"<p style=\"text-align: center;\">$F_X(N)=\\mathbb{P}(X\\leq N)=p,$</p>\n",
"where $F_X$ is the cumulative distribution function of the tokenized dataset and $X$ the length of a random example."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d93579ca-fe54-4cd3-a35d-ae8a609c21da",
"metadata": {},
"outputs": [],
"source": [
"from statistics import mean\n",
"import numpy as np\n",
"\n",
"# Target percentile\n",
"p = 0.9\n",
"\n",
"def find_percentile_value(arr,percentile):\n",
" if not arr:\n",
" raise ValueError(\"The list should not be empty\")\n",
" arr.sort() # Sort the list\n",
" # Calculate the index for the pth percentile\n",
" index = int(percentile * len(arr)) - 1\n",
" # Handle edge cases where index might be out of bounds\n",
" index = max(0, min(index, len(arr) - 1))\n",
" return arr[index]\n",
"\n",
"percentile_value = find_percentile_value(length_examples,p)\n",
"print(\"The minimum value is:\", min(length_examples))\n",
"print(\"The arithmetic mean is:\", int(np.floor(mean(length_examples))))\n",
"print(\"The \"+str(int(p*100))+\"th percentile value is:\", percentile_value)\n",
"print(\"The maximum value is:\", max(length_examples))"
]
},
{
"cell_type": "markdown",
"id": "5d994a68-d9cb-4dcb-8a85-891c81db9d37",
"metadata": {},
"source": [
"### Data collation\n",
"\n",
"We now need to pass the dataset through a data collator. The point here is to \"mask\" the \"user questions\" (prompts) within the dataset, so that the model learns the \"answers\" only (there is no point in learning the questions, they should only serve as context). \n",
"\n",
"What the collator does is that it will use the instruction/response templates to locate the starts of user input and starts of assistant response. It then fill those sections with $-100$ tokens, which will be ignored during training (that’s how the user inputs are masked to prevent them from contributing to the loss)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16edd4fc-4fd9-4cdf-95a7-73a8ec18ae66",
"metadata": {},
"outputs": [],
"source": [
"from transformers import DataCollatorForLanguageModeling\n",
"import torch\n",
"\n",
"class CustomDataCollator(DataCollatorForLanguageModeling):\n",
" def __init__(self, tokenizer, mlm=False):\n",
" super().__init__(tokenizer=tokenizer, mlm=mlm)\n",
" self.inst_token = tokenizer.encode('[INST]', add_special_tokens=False)[0]\n",
" self.inst_end_token = tokenizer.encode('[/INST]', add_special_tokens=False)[0]\n",
" self.eos_token = tokenizer.eos_token_id\n",
"\n",
" def torch_call(self, examples):\n",
" batch = super().torch_call(examples)\n",
"\n",
" for i, input_ids in enumerate(batch['input_ids']):\n",
" # Find positions of [INST], [/INST], and EOS tokens\n",
" inst_positions = torch.where(input_ids == self.inst_token)[0]\n",
" inst_end_positions = torch.where(input_ids == self.inst_end_token)[0]\n",
" eos_positions = torch.where(input_ids == self.eos_token)[0]\n",
"\n",
" if len(inst_positions) > 0 and len(eos_positions) > 0:\n",
" # Find the start of the last assistant response\n",
" last_inst_end_pos = inst_end_positions[-1]\n",
" \n",
" # Mask everything before the last assistant response\n",
" batch['labels'][i, :last_inst_end_pos+1] = -100\n",
"\n",
" # If there's an EOS token after the last [/INST], unmask until that EOS\n",
" if eos_positions[-1] > last_inst_end_pos:\n",
" batch['labels'][i, last_inst_end_pos+1:eos_positions[-1]+1] = input_ids[last_inst_end_pos+1:eos_positions[-1]+1]\n",
" else:\n",
" # If no EOS after last [/INST], unmask until the end\n",
" batch['labels'][i, last_inst_end_pos+1:] = input_ids[last_inst_end_pos+1:]\n",
"\n",
" return batch\n",
"\n",
"# We now define the collator\n",
"collator = CustomDataCollator(tokenizer=tokenizer)"
]
},
{
"cell_type": "markdown",
"id": "c2c2bc01-e500-4271-86fd-fed5912e3627",
"metadata": {},
"source": [
"Let's check that the data collator has appropriately handled the question/answer turns:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "497183f2-cd85-49d0-a25b-386c421b45dd",
"metadata": {},
"outputs": [],
"source": [
"# We apply the collator to a sample of the dataset\n",
"collated_data = collator([tokenizer(ds[\"text\"][1])])['labels'][0]\n",
"\n",
"# We convert the above to a list (so as to be able to print everything)\n",
"collated_data_list = collated_data.tolist()\n",
"print(collated_data_list)"
]
},
{
"cell_type": "markdown",
"id": "0af6110c-0bf5-4031-9eb8-3886522df583",
"metadata": {},
"source": [
"*Remark:* The only thing that should not be masked as \"$-100$\" tokens in the very last \"assistant\" message."
]
},
{
"cell_type": "markdown",
"id": "38ae6f7c-6041-4ccd-9e83-21432702afea",
"metadata": {},
"source": [
"### Setting LoRA parameters and modules\n",
"\n",
"Here, we will do two things: setting the LoRA parameters $r$ and $\\alpha$, and setting the target modules to be trained.\n",
"\n",
"##### LoRA parameters\n",
"The values $\\alpha=r$ or $\\alpha=2r$ (considered a \"sweet spot\"), with $r$ a power of $2$, are conventional (see LoRA paper in the link below). The latter is often used to have more emphasis and the new data. \n",
"(See: https://arxiv.org/pdf/2106.09685)\n",
"\n",
"##### LoRA modules\n",
"The LoRA modules are, essentially, the matrices that the model allows us to train. Their name may depend on the model, which is why it is recommended to look at what it looks like via the command:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "26baed38-f3bf-4b4b-b259-0b36347edec1",
"metadata": {},
"outputs": [],
"source": [
"print(model)"
]
},
{
"cell_type": "markdown",
"id": "8b258567-6632-4bdf-9e96-9e5abb09192f",
"metadata": {},
"source": [
"(Look for linear modules.) \n",
"In most cases (Mistral, Llama, etc), however, the modules are something like:\n",
"```\n",
"[\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\", \"lm_head\"]\n",
"```\n",
"but they sometimes bear different names (e.g. with Falcon models)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9072728a-2d22-4bec-a1ad-fb29907df44b",
"metadata": {},
"outputs": [],
"source": [
"# Adding the adapters in the layers\n",
"model = prepare_model_for_kbit_training(model)\n",
"\n",
"# LoRA config\n",
"peft_config = LoraConfig(\n",
" r=256,\n",
" lora_alpha=256,\n",
" lora_dropout=0.05, # Conventional\n",
" bias=\"none\",\n",
" task_type=\"CAUSAL_LM\",\n",
" target_modules=\"all-linear\"\n",
" )\n",
"\n",
"# We add the LoRA \"adapters\" to the model\n",
"model = get_peft_model(model, peft_config)"
]
},
{
"cell_type": "markdown",
"id": "f685d579-1451-442b-b725-b9c0fc53091d",
"metadata": {},
"source": [
"*Remark:* In most cases, one can simply set:\n",
"```\n",
"target_modules = 'all-linear'\n",
"```\n",
"but this might raise an error for some models (e.g. with Google's Gemma-2B).\n",
"\n",
"(See: https://stackoverflow.com/questions/76768226/target-modules-for-applying-peft-lora-on-different-models)\n",
"\n",
"### Setting Weights & Biases for monitoring purposes\n",
"\n",
"This will allow us to monitor the training directly from W&B."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ac77ca8c-88e6-41ea-9e20-677cdd443804",
"metadata": {},
"outputs": [],
"source": [
"# Monitering the LLM from WandB\n",
"wandb.login(key = \"MY_WANDB_KEY\")\n",
"run = wandb.init(project='MyProjectName', job_type=\"training\", anonymous=\"allow\")"
]
},
{
"cell_type": "markdown",
"id": "beb29aae-0239-4b61-b3d4-0bc6310495ae",
"metadata": {},
"source": [
"### Setting training parameters\n",
"Here, we set the hyperparameters (epochs, batch, etc.) as well as the SFT (i.e. Supervised Fine-Tuning) parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b86ef8be-9fd4-43a8-8086-6397e7a4e10c",
"metadata": {},
"outputs": [],
"source": [
"# Hyperparamter\n",
"training_arguments = TrainingArguments(\n",
" output_dir= \"./results\",\n",
" num_train_epochs= 3, # total number of training epochs\n",
" per_device_train_batch_size= 4, # batch size per device during training (the higher the better)\n",
" gradient_accumulation_steps= 8,\n",
" optim = \"paged_adamw_8bit\",\n",
" save_steps= 1000, # Save checkpoints #every 50 steps\n",
" logging_steps= 15, # When to start reporting loss\n",
" learning_rate= 2e-5, # We take a not too small value given that new tokens have been added\n",
" weight_decay= 0.001, # strength of weight decay\n",
" fp16= False,\n",
" bf16= False,\n",
" max_grad_norm= 0.3,\n",
" max_steps= -1,\n",
" warmup_ratio= 0.3, # number of warmup steps for learning rate scheduler\n",
" group_by_length= True, # Group sequences into batches with same length (saves memory and speeds up training considerably)\n",
" lr_scheduler_type=\"constant\",\n",
" report_to=\"wandb\",\n",
")\n",
"\n",
"# Setting SFT parameters\n",
"trainer = SFTTrainer(\n",
" model=model, # the instantiated HF Transformers model to be trained\n",
" train_dataset=ds, # Training dataset\n",
" data_collator=collator, # Making sure that data collator correction is taken into account\n",
" peft_config=peft_config,\n",
" max_seq_length=4096,\n",
" dataset_text_field=\"text\", # Column of the dataset to be used for training\n",
" tokenizer=tokenizer,\n",
" args=training_arguments, # training arguments, defined above\n",
" packing= False,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "c65bf6b7-fd2b-497a-bc6e-00b6a7187d62",
"metadata": {},
"source": [
"### Training and saving the model\n",
"A progression bar will soon appear displaying a number of steps which corresponds to\n",
"<p style=\"text-align: center;\">$ \\#\\verb\"steps\" = \\left\\lceil\\displaystyle\\frac{\\verb\"total_dataset_size\"\\times\\#\\verb\"epochs\"}{\\verb\"batch_size\"}\\right\\rceil, $</p>\n",
"where\n",
"<p style=\"text-align: center;\">$\\verb\"batch_size\" = \\verb\"per_device_train_batch_size\" \\times \\verb\"gradient_accumulation_steps\",$</p>\n",
"\n",
"and $\\left\\lceil\\cdot\\right\\rceil$ is the ceiling function."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8182f4fa-da51-467a-96bd-93c6047822be",
"metadata": {},
"outputs": [],
"source": [
"# Training the model\n",
"trainer.train()\n",
"\n",
"# Save the fine-tuned model\n",
"trainer.model.save_pretrained(new_model)\n",
"wandb.finish()\n",
"model.config.use_cache = True\n",
"model.eval()\n",
"\n",
"#######################################################\n",
"# We save the model in the same cell, to avoid weird #\n",
"# behaviors induced by GPU providers (Colab...) #\n",
"#######################################################\n",
"\n",
"# Clear the memory footprint (NB: pretrained model has been saved to \"new_model\")\n",
"del model, trainer\n",
"torch.cuda.empty_cache()\n",
"print(\"Memory footprint has been cleared.\")\n",
"\n",
"# Reload the base model\n",
"base_model_reload = AutoModelForCausalLM.from_pretrained(\n",
" base_model, low_cpu_mem_usage=True,\n",
" return_dict=True,torch_dtype=torch.bfloat16,\n",
" device_map= \"auto\")\n",
"print(\"Base model has been reloaded.\")\n",
"\n",
"# Merging the adapter with model\n",
"model = PeftModel.from_pretrained(base_model_reload, new_model)\n",
"model = model.merge_and_unload()\n",
"print(\"Adapter has been merged to the base model.\")\n",
"\n",
"# Reload tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)\n",
"tokenizer.padding_side = \"right\"\n",
"tokenizer.pad_token = tokenizer.unk_token\n",
"tokenizer.add_pad_token = True\n",
"print(\"Tokenizer has been reloaded.\")\n",
"\n",
"# Pushing the merged model to hugging face hub\n",
"model.push_to_hub(repo_id='New_model_name', private=True)\n",
"tokenizer.push_to_hub(repo_id='New_model_name', private=True)"
]
},
{
"cell_type": "markdown",
"id": "eae976cf-aa6c-4b62-bbbc-331505c99719",
"metadata": {},
"source": [
"Et voilà !…"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|