File size: 5,634 Bytes
ed01507 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import io
import os
import sys
from typing import List, Optional
from urllib.parse import urlparse
import cv2
import numpy as np
import torch
from PIL import Image, ImageOps
from loguru import logger
from torch.hub import download_url_to_file, get_dir
def get_cache_path_by_url(url):
parts = urlparse(url)
hub_dir = get_dir()
model_dir = os.path.join(hub_dir, "checkpoints")
if not os.path.isdir(model_dir):
os.makedirs(model_dir)
filename = os.path.basename(parts.path)
cached_file = os.path.join(model_dir, filename)
return cached_file
def download_model(url):
cached_file = get_cache_path_by_url(url)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = None
download_url_to_file(url, cached_file, hash_prefix, progress=True)
return cached_file
def ceil_modulo(x, mod):
if x % mod == 0:
return x
return (x // mod + 1) * mod
def load_jit_model(url_or_path, device):
if os.path.exists(url_or_path):
model_path = url_or_path
else:
model_path = download_model(url_or_path)
logger.info(f"Load model from: {model_path}")
try:
model = torch.jit.load(model_path).to(device)
except:
logger.error(
f"Failed to load {model_path}, delete model and restart lama-cleaner"
)
exit(-1)
model.eval()
return model
def load_model(model: torch.nn.Module, url_or_path, device):
if os.path.exists(url_or_path):
model_path = url_or_path
else:
model_path = download_model(url_or_path)
try:
state_dict = torch.load(model_path, map_location='cpu')
model.load_state_dict(state_dict, strict=True)
model.to(device)
logger.info(f"Load model from: {model_path}")
except:
logger.error(
f"Failed to load {model_path}, delete model and restart lama-cleaner"
)
exit(-1)
model.eval()
return model
def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes:
data = cv2.imencode(
f".{ext}",
image_numpy,
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
)[1]
image_bytes = data.tobytes()
return image_bytes
def load_img(img_bytes, gray: bool = False):
alpha_channel = None
image = Image.open(io.BytesIO(img_bytes))
try:
image = ImageOps.exif_transpose(image)
except:
pass
if gray:
image = image.convert('L')
np_img = np.array(image)
else:
if image.mode == 'RGBA':
np_img = np.array(image)
alpha_channel = np_img[:, :, -1]
np_img = cv2.cvtColor(np_img, cv2.COLOR_RGBA2RGB)
else:
image = image.convert('RGB')
np_img = np.array(image)
return np_img, alpha_channel
def norm_img(np_img):
if len(np_img.shape) == 2:
np_img = np_img[:, :, np.newaxis]
np_img = np.transpose(np_img, (2, 0, 1))
np_img = np_img.astype("float32") / 255
return np_img
def resize_max_size(
np_img, size_limit: int, interpolation=cv2.INTER_CUBIC
) -> np.ndarray:
# Resize image's longer size to size_limit if longer size larger than size_limit
h, w = np_img.shape[:2]
if max(h, w) > size_limit:
ratio = size_limit / max(h, w)
new_w = int(w * ratio + 0.5)
new_h = int(h * ratio + 0.5)
return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation)
else:
return np_img
def pad_img_to_modulo(
img: np.ndarray, mod: int, square: bool = False, min_size: Optional[int] = None
):
"""
Args:
img: [H, W, C]
mod:
square: 是否为正方形
min_size:
Returns:
"""
if len(img.shape) == 2:
img = img[:, :, np.newaxis]
height, width = img.shape[:2]
out_height = ceil_modulo(height, mod)
out_width = ceil_modulo(width, mod)
if min_size is not None:
assert min_size % mod == 0
out_width = max(min_size, out_width)
out_height = max(min_size, out_height)
if square:
max_size = max(out_height, out_width)
out_height = max_size
out_width = max_size
return np.pad(
img,
((0, out_height - height), (0, out_width - width), (0, 0)),
mode="symmetric",
)
def boxes_from_mask(mask: np.ndarray) -> List[np.ndarray]:
"""
Args:
mask: (h, w, 1) 0~255
Returns:
"""
height, width = mask.shape[:2]
_, thresh = cv2.threshold(mask, 127, 255, 0)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
boxes = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
box = np.array([x, y, x + w, y + h]).astype(int)
box[::2] = np.clip(box[::2], 0, width)
box[1::2] = np.clip(box[1::2], 0, height)
boxes.append(box)
return boxes
def only_keep_largest_contour(mask: np.ndarray) -> List[np.ndarray]:
"""
Args:
mask: (h, w) 0~255
Returns:
"""
_, thresh = cv2.threshold(mask, 127, 255, 0)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
max_area = 0
max_index = -1
for i, cnt in enumerate(contours):
area = cv2.contourArea(cnt)
if area > max_area:
max_area = area
max_index = i
if max_index != -1:
new_mask = np.zeros_like(mask)
return cv2.drawContours(new_mask, contours, max_index, 255, -1)
else:
return mask
|