File size: 7,459 Bytes
ed01507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import random

import PIL.Image
import cv2
import numpy as np
import torch
from diffusers import PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, \
    EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from loguru import logger

from lama_cleaner.helper import resize_max_size
from lama_cleaner.model.base import InpaintModel
from lama_cleaner.model.utils import torch_gc
from lama_cleaner.schema import Config, SDSampler


class CPUTextEncoderWrapper:
    def __init__(self, text_encoder, torch_dtype):
        self.config = text_encoder.config
        self.text_encoder = text_encoder.to(torch.device('cpu'), non_blocking=True)
        self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
        self.torch_dtype = torch_dtype
        del text_encoder
        torch_gc()

    def __call__(self, x, **kwargs):
        input_device = x.device
        return [self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0].to(input_device).to(self.torch_dtype)]


class SD(InpaintModel):
    pad_mod = 8
    min_size = 512

    def init_model(self, device: torch.device, **kwargs):
        from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
        fp16 = not kwargs.get('no_half', False)

        model_kwargs = {"local_files_only": kwargs.get('local_files_only', kwargs['sd_run_local'])}
        if kwargs['disable_nsfw'] or kwargs.get('cpu_offload', False):
            logger.info("Disable Stable Diffusion Model NSFW checker")
            model_kwargs.update(dict(
                safety_checker=None,
                feature_extractor=None,
                requires_safety_checker=False
            ))

        use_gpu = device == torch.device('cuda') and torch.cuda.is_available()
        torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
        self.model = StableDiffusionInpaintPipeline.from_pretrained(
            self.model_id_or_path,
            revision="fp16" if use_gpu and fp16 else "main",
            torch_dtype=torch_dtype,
            use_auth_token=kwargs["hf_access_token"],
            **model_kwargs
        )

        # https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
        self.model.enable_attention_slicing()
        # https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
        if kwargs.get('enable_xformers', False):
            self.model.enable_xformers_memory_efficient_attention()

        if kwargs.get('cpu_offload', False) and use_gpu:
            # TODO: gpu_id
            logger.info("Enable sequential cpu offload")
            self.model.enable_sequential_cpu_offload(gpu_id=0)
        else:
            self.model = self.model.to(device)
            if kwargs['sd_cpu_textencoder']:
                logger.info("Run Stable Diffusion TextEncoder on CPU")
                self.model.text_encoder = CPUTextEncoderWrapper(self.model.text_encoder, torch_dtype)

        self.callback = kwargs.pop("callback", None)

    def _scaled_pad_forward(self, image, mask, config: Config):
        longer_side_length = int(config.sd_scale * max(image.shape[:2]))
        origin_size = image.shape[:2]
        downsize_image = resize_max_size(image, size_limit=longer_side_length)
        downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
        logger.info(
            f"Resize image to do sd inpainting: {image.shape} -> {downsize_image.shape}"
        )
        inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
        # only paste masked area result
        inpaint_result = cv2.resize(
            inpaint_result,
            (origin_size[1], origin_size[0]),
            interpolation=cv2.INTER_CUBIC,
        )
        original_pixel_indices = mask < 127
        inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
        return inpaint_result

    def forward(self, image, mask, config: Config):
        """Input image and output image have same size
        image: [H, W, C] RGB
        mask: [H, W, 1] 255 means area to repaint
        return: BGR IMAGE
        """

        scheduler_config = self.model.scheduler.config

        if config.sd_sampler == SDSampler.ddim:
            scheduler = DDIMScheduler.from_config(scheduler_config)
        elif config.sd_sampler == SDSampler.pndm:
            scheduler = PNDMScheduler.from_config(scheduler_config)
        elif config.sd_sampler == SDSampler.k_lms:
            scheduler = LMSDiscreteScheduler.from_config(scheduler_config)
        elif config.sd_sampler == SDSampler.k_euler:
            scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
        elif config.sd_sampler == SDSampler.k_euler_a:
            scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
        elif config.sd_sampler == SDSampler.dpm_plus_plus:
            scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)
        else:
            raise ValueError(config.sd_sampler)

        self.model.scheduler = scheduler

        seed = config.sd_seed
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)

        if config.sd_mask_blur != 0:
            k = 2 * config.sd_mask_blur + 1
            mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]

        img_h, img_w = image.shape[:2]

        output = self.model(
            image=PIL.Image.fromarray(image),
            prompt=config.prompt,
            negative_prompt=config.negative_prompt,
            mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
            num_inference_steps=config.sd_steps,
            guidance_scale=config.sd_guidance_scale,
            output_type="np.array",
            callback=self.callback,
            height=img_h,
            width=img_w,
        ).images[0]

        output = (output * 255).round().astype("uint8")
        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
        return output

    @torch.no_grad()
    def __call__(self, image, mask, config: Config):
        """
        images: [H, W, C] RGB, not normalized
        masks: [H, W]
        return: BGR IMAGE
        """
        # boxes = boxes_from_mask(mask)
        if config.use_croper:
            crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
            crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
            inpaint_result = image[:, :, ::-1]
            inpaint_result[t:b, l:r, :] = crop_image
        else:
            inpaint_result = self._scaled_pad_forward(image, mask, config)

        return inpaint_result

    def forward_post_process(self, result, image, mask, config):
        if config.sd_match_histograms:
            result = self._match_histograms(result, image[:, :, ::-1], mask)

        if config.sd_mask_blur != 0:
            k = 2 * config.sd_mask_blur + 1
            mask = cv2.GaussianBlur(mask, (k, k), 0)
        return result, image, mask

    @staticmethod
    def is_downloaded() -> bool:
        # model will be downloaded when app start, and can't switch in frontend settings
        return True


class SD15(SD):
    model_id_or_path = "runwayml/stable-diffusion-inpainting"


class SD2(SD):
    model_id_or_path = "stabilityai/stable-diffusion-2-inpainting"