File size: 8,786 Bytes
ed01507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/env python3
import os
import sys
# import traceback

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))

import base64

import logging
import multiprocessing
import os
import random
import time
import imghdr
from pathlib import Path

import cv2
import torch
import numpy as np
from loguru import logger

from lama_cleaner.interactive_seg import InteractiveSeg
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
from lama_cleaner.file_manager import FileManager

try:
    torch._C._jit_override_can_fuse_on_cpu(False)
    torch._C._jit_override_can_fuse_on_gpu(False)
    torch._C._jit_set_texpr_fuser_enabled(False)
    torch._C._jit_set_nvfuser_enabled(False)
except:
    pass

# Disable ability for Flask to display warning about using a development server in a production environment.
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356
# cli.show_server_banner = lambda *_: None
# from flask_cors import CORS

from lama_cleaner.helper import (
    load_img,
    resize_max_size,
)

NUM_THREADS = str(multiprocessing.cpu_count())

# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"

os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
    os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]

BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")


FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

class NoFlaskwebgui(logging.Filter):
    def filter(self, record):
        return "flaskwebgui-keep-server-alive" not in record.getMessage()


logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())

# app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
# app.config["JSON_AS_ASCII"] = False
# CORS(app, expose_headers=["Content-Disposition"])

model: ModelManager = None
thumb: FileManager = None
interactive_seg_model: InteractiveSeg = None
device = None
input_image_path: str = None
is_disable_model_switch: bool = False
is_enable_file_manager: bool = False
is_desktop: bool = False


def get_image_ext(img_bytes):
    w = imghdr.what("", img_bytes)
    if w is None:
        w = "jpeg"
    return w


def diffuser_callback(i, t, latents):
    pass
    # socketio.emit('diffusion_step', {'diffusion_step': step})



config = Config(
    ldm_steps=25,
    ldm_sampler='plms',
    hd_strategy='Original',
    zits_wireframe=True,
    hd_strategy_crop_margin=196,
    hd_strategy_crop_trigger_size=1280,
    hd_strategy_resize_limit=2048,
    prompt="",
    negative_prompt="",
    use_croper=False,
    croper_x=None,
    croper_y=None,
    croper_height=None,
    croper_width=None,
    sd_scale=1,
    sd_mask_blur=5,
    sd_strength=0.75,
    sd_steps=50,
    sd_guidance_scale=7.5,
    sd_sampler="pndm",
    sd_seed=42,
    sd_match_histograms=False,
    cv2_flag="INPAINT_NS",
    cv2_radius=40,
    paint_by_example_steps=50,
    paint_by_example_guidance_scale=7.5,
    paint_by_example_mask_blur=5,
    paint_by_example_seed=42,
    paint_by_example_match_histograms=False,
    paint_by_example_example_image=None,
)




def process(origin_image_bytes, mask):
    
    image, alpha_channel = load_img(origin_image_bytes)
    
    mask, _ = load_img(mask, gray=True)
    mask = np.where(mask > 0, 255, 0).astype(np.uint8)

    if image.shape[:2] != mask.shape[:2]:
        return f"Mask shape {mask.shape[:2]} not queal to Image shape {image.shape[:2]}", 400

    original_shape = image.shape
    interpolation = cv2.INTER_CUBIC

    size_limit = 2048
    if size_limit == "Original":
        size_limit = max(image.shape)
    else:
        size_limit = int(size_limit)

    if config.sd_seed == -1:
        config.sd_seed = random.randint(1, 999999999)
    if config.paint_by_example_seed == -1:
        config.paint_by_example_seed = random.randint(1, 999999999)

    logger.info(f"Origin image shape: {original_shape}")
    image = resize_max_size(image, size_limit=size_limit,
                            interpolation=interpolation)
    logger.info(f"Resized image shape: {image.shape}")

    mask = resize_max_size(mask, size_limit=size_limit,
                           interpolation=interpolation)

    start = time.time()
    try:
        with torch.no_grad():
            res_np_img = model(image, mask, config)
    except RuntimeError as e:
        torch.cuda.empty_cache()
        if "CUDA out of memory. " in str(e):
            # NOTE: the string may change?
            return "CUDA out of memory", 500
        else:
            logger.exception(e)
            return "Internal Server Error", 500
    finally:
        torch.cuda.empty_cache()
        logger.info(f"process time: {(time.time() - start)}s")

    if alpha_channel is not None:
        if alpha_channel.shape[:2] != res_np_img.shape[:2]:
            alpha_channel = np.resize(
                alpha_channel, (res_np_img.shape[1], res_np_img.shape[0])
            )
        res_np_img = np.concatenate(
            (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
        )


    img = cv2.imencode('.jpg', res_np_img)[1]
    return base64.b64encode(img).decode('utf-8')


# @app.route("/interactive_seg", methods=["POST"])
# def interactive_seg():
#     input = request.files
#     origin_image_bytes = input["image"].read()  # RGB
#     image, _ = load_img(origin_image_bytes)
#     if 'mask' in input:
#         mask, _ = load_img(input["mask"].read(), gray=True)
#     else:
#         mask = None

#     _clicks = json.loads(request.form["clicks"])
#     clicks = []
#     for i, click in enumerate(_clicks):
#         clicks.append(Click(coords=(click[1], click[0]), indx=i, is_positive=click[2] == 1))

#     start = time.time()
#     new_mask = interactive_seg_model(image, clicks=clicks, prev_mask=mask)
#     logger.info(f"interactive seg process time: {(time.time() - start) * 1000}ms")
#     response = make_response(
#         send_file(
#             io.BytesIO(numpy_to_bytes(new_mask, 'png')),
#             mimetype=f"image/png",
#         )
#     )
#     return response


def current_model():
    return model.name, 200


def get_is_disable_model_switch():
    res = 'true' if is_disable_model_switch else 'false'
    return res, 200


# @app.route("/is_enable_file_manager")
# def get_is_enable_file_manager():
#     res = 'true' if is_enable_file_manager else 'false'
#     return res, 200


# @app.route("/model_downloaded/<name>")
# def model_downloaded(name):
#     return str(model.is_downloaded(name)), 200


# @app.route("/is_desktop")
# def get_is_desktop():
#     return str(is_desktop), 200


def switch_model(new_name):
    if is_disable_model_switch:
        return "Switch model is disabled", 400

    if new_name == model.name:
        return "Same model", 200

    try:
        model.switch(new_name)
    except NotImplementedError:
        return f"{new_name} not implemented", 403
    return f"ok, switch to {new_name}", 200


# @app.route("/")
# def index():
#     return send_file(os.path.join(BUILD_DIR, "index.html"), cache_timeout=0)


# @app.route("/inputimage")
# def set_input_photo():
#     if input_image_path:
#         with open(input_image_path, "rb") as f:
#             image_in_bytes = f.read()
#         return send_file(
#             input_image_path,
#             as_attachment=True,
#             attachment_filename=Path(input_image_path).name,
#             mimetype=f"image/{get_image_ext(image_in_bytes)}",
#         )
#     else:
#         return "No Input Image"


# class FSHandler(FileSystemEventHandler):
#     def on_modified(self, event):
#         print("File modified: %s" % event.src_path)


def initModel():

    global model
    global interactive_seg_model
    global device
    global input_image_path
    global is_disable_model_switch
    global is_enable_file_manager
    global is_desktop
    global thumb
    
    model_device = "cuda"
    
    if not torch.cuda.is_available():
        model_device = "cpu"

    device = torch.device(model_device)
    is_disable_model_switch = False
    is_desktop = False
    if is_disable_model_switch:
        logger.info(
            f"Start with --disable-model-switch, model switch on frontend is disable")

    model = ModelManager(model_device, callback=diffuser_callback)

    interactive_seg_model = InteractiveSeg()