File size: 8,786 Bytes
ed01507 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
#!/usr/bin/env python3
import os
import sys
# import traceback
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
import base64
import logging
import multiprocessing
import os
import random
import time
import imghdr
from pathlib import Path
import cv2
import torch
import numpy as np
from loguru import logger
from lama_cleaner.interactive_seg import InteractiveSeg
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
from lama_cleaner.file_manager import FileManager
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
# Disable ability for Flask to display warning about using a development server in a production environment.
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356
# cli.show_server_banner = lambda *_: None
# from flask_cors import CORS
from lama_cleaner.helper import (
load_img,
resize_max_size,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
class NoFlaskwebgui(logging.Filter):
def filter(self, record):
return "flaskwebgui-keep-server-alive" not in record.getMessage()
logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())
# app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
# app.config["JSON_AS_ASCII"] = False
# CORS(app, expose_headers=["Content-Disposition"])
model: ModelManager = None
thumb: FileManager = None
interactive_seg_model: InteractiveSeg = None
device = None
input_image_path: str = None
is_disable_model_switch: bool = False
is_enable_file_manager: bool = False
is_desktop: bool = False
def get_image_ext(img_bytes):
w = imghdr.what("", img_bytes)
if w is None:
w = "jpeg"
return w
def diffuser_callback(i, t, latents):
pass
# socketio.emit('diffusion_step', {'diffusion_step': step})
config = Config(
ldm_steps=25,
ldm_sampler='plms',
hd_strategy='Original',
zits_wireframe=True,
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt="",
negative_prompt="",
use_croper=False,
croper_x=None,
croper_y=None,
croper_height=None,
croper_width=None,
sd_scale=1,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler="pndm",
sd_seed=42,
sd_match_histograms=False,
cv2_flag="INPAINT_NS",
cv2_radius=40,
paint_by_example_steps=50,
paint_by_example_guidance_scale=7.5,
paint_by_example_mask_blur=5,
paint_by_example_seed=42,
paint_by_example_match_histograms=False,
paint_by_example_example_image=None,
)
def process(origin_image_bytes, mask):
image, alpha_channel = load_img(origin_image_bytes)
mask, _ = load_img(mask, gray=True)
mask = np.where(mask > 0, 255, 0).astype(np.uint8)
if image.shape[:2] != mask.shape[:2]:
return f"Mask shape {mask.shape[:2]} not queal to Image shape {image.shape[:2]}", 400
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
size_limit = 2048
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
if config.paint_by_example_seed == -1:
config.paint_by_example_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape: {original_shape}")
image = resize_max_size(image, size_limit=size_limit,
interpolation=interpolation)
logger.info(f"Resized image shape: {image.shape}")
mask = resize_max_size(mask, size_limit=size_limit,
interpolation=interpolation)
start = time.time()
try:
with torch.no_grad():
res_np_img = model(image, mask, config)
except RuntimeError as e:
torch.cuda.empty_cache()
if "CUDA out of memory. " in str(e):
# NOTE: the string may change?
return "CUDA out of memory", 500
else:
logger.exception(e)
return "Internal Server Error", 500
finally:
torch.cuda.empty_cache()
logger.info(f"process time: {(time.time() - start)}s")
if alpha_channel is not None:
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
alpha_channel = np.resize(
alpha_channel, (res_np_img.shape[1], res_np_img.shape[0])
)
res_np_img = np.concatenate(
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
img = cv2.imencode('.jpg', res_np_img)[1]
return base64.b64encode(img).decode('utf-8')
# @app.route("/interactive_seg", methods=["POST"])
# def interactive_seg():
# input = request.files
# origin_image_bytes = input["image"].read() # RGB
# image, _ = load_img(origin_image_bytes)
# if 'mask' in input:
# mask, _ = load_img(input["mask"].read(), gray=True)
# else:
# mask = None
# _clicks = json.loads(request.form["clicks"])
# clicks = []
# for i, click in enumerate(_clicks):
# clicks.append(Click(coords=(click[1], click[0]), indx=i, is_positive=click[2] == 1))
# start = time.time()
# new_mask = interactive_seg_model(image, clicks=clicks, prev_mask=mask)
# logger.info(f"interactive seg process time: {(time.time() - start) * 1000}ms")
# response = make_response(
# send_file(
# io.BytesIO(numpy_to_bytes(new_mask, 'png')),
# mimetype=f"image/png",
# )
# )
# return response
def current_model():
return model.name, 200
def get_is_disable_model_switch():
res = 'true' if is_disable_model_switch else 'false'
return res, 200
# @app.route("/is_enable_file_manager")
# def get_is_enable_file_manager():
# res = 'true' if is_enable_file_manager else 'false'
# return res, 200
# @app.route("/model_downloaded/<name>")
# def model_downloaded(name):
# return str(model.is_downloaded(name)), 200
# @app.route("/is_desktop")
# def get_is_desktop():
# return str(is_desktop), 200
def switch_model(new_name):
if is_disable_model_switch:
return "Switch model is disabled", 400
if new_name == model.name:
return "Same model", 200
try:
model.switch(new_name)
except NotImplementedError:
return f"{new_name} not implemented", 403
return f"ok, switch to {new_name}", 200
# @app.route("/")
# def index():
# return send_file(os.path.join(BUILD_DIR, "index.html"), cache_timeout=0)
# @app.route("/inputimage")
# def set_input_photo():
# if input_image_path:
# with open(input_image_path, "rb") as f:
# image_in_bytes = f.read()
# return send_file(
# input_image_path,
# as_attachment=True,
# attachment_filename=Path(input_image_path).name,
# mimetype=f"image/{get_image_ext(image_in_bytes)}",
# )
# else:
# return "No Input Image"
# class FSHandler(FileSystemEventHandler):
# def on_modified(self, event):
# print("File modified: %s" % event.src_path)
def initModel():
global model
global interactive_seg_model
global device
global input_image_path
global is_disable_model_switch
global is_enable_file_manager
global is_desktop
global thumb
model_device = "cuda"
if not torch.cuda.is_available():
model_device = "cpu"
device = torch.device(model_device)
is_disable_model_switch = False
is_desktop = False
if is_disable_model_switch:
logger.info(
f"Start with --disable-model-switch, model switch on frontend is disable")
model = ModelManager(model_device, callback=diffuser_callback)
interactive_seg_model = InteractiveSeg()
|