|
import os |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
|
|
from lama_cleaner.helper import load_model, get_cache_path_by_url, norm_img |
|
from lama_cleaner.model.base import InpaintModel |
|
from lama_cleaner.model.utils import setup_filter, Conv2dLayer, FullyConnectedLayer, conv2d_resample, bias_act, \ |
|
upsample2d, activation_funcs, MinibatchStdLayer, to_2tuple, normalize_2nd_moment |
|
from lama_cleaner.schema import Config |
|
|
|
|
|
class ModulatedConv2d(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
style_dim, |
|
demodulate=True, |
|
up=1, |
|
down=1, |
|
resample_filter=[1, 3, 3, 1], |
|
conv_clamp=None, |
|
): |
|
super().__init__() |
|
self.demodulate = demodulate |
|
|
|
self.weight = torch.nn.Parameter(torch.randn([1, out_channels, in_channels, kernel_size, kernel_size])) |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) |
|
self.padding = self.kernel_size // 2 |
|
self.up = up |
|
self.down = down |
|
self.register_buffer('resample_filter', setup_filter(resample_filter)) |
|
self.conv_clamp = conv_clamp |
|
|
|
self.affine = FullyConnectedLayer(style_dim, in_channels, bias_init=1) |
|
|
|
def forward(self, x, style): |
|
batch, in_channels, height, width = x.shape |
|
style = self.affine(style).view(batch, 1, in_channels, 1, 1) |
|
weight = self.weight * self.weight_gain * style |
|
|
|
if self.demodulate: |
|
decoefs = (weight.pow(2).sum(dim=[2, 3, 4]) + 1e-8).rsqrt() |
|
weight = weight * decoefs.view(batch, self.out_channels, 1, 1, 1) |
|
|
|
weight = weight.view(batch * self.out_channels, in_channels, self.kernel_size, self.kernel_size) |
|
x = x.view(1, batch * in_channels, height, width) |
|
x = conv2d_resample(x=x, w=weight, f=self.resample_filter, up=self.up, down=self.down, |
|
padding=self.padding, groups=batch) |
|
out = x.view(batch, self.out_channels, *x.shape[2:]) |
|
|
|
return out |
|
|
|
|
|
class StyleConv(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
style_dim, |
|
resolution, |
|
kernel_size=3, |
|
up=1, |
|
use_noise=False, |
|
activation='lrelu', |
|
resample_filter=[1, 3, 3, 1], |
|
conv_clamp=None, |
|
demodulate=True, |
|
): |
|
super().__init__() |
|
|
|
self.conv = ModulatedConv2d(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
style_dim=style_dim, |
|
demodulate=demodulate, |
|
up=up, |
|
resample_filter=resample_filter, |
|
conv_clamp=conv_clamp) |
|
|
|
self.use_noise = use_noise |
|
self.resolution = resolution |
|
if use_noise: |
|
self.register_buffer('noise_const', torch.randn([resolution, resolution])) |
|
self.noise_strength = torch.nn.Parameter(torch.zeros([])) |
|
|
|
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) |
|
self.activation = activation |
|
self.act_gain = activation_funcs[activation].def_gain |
|
self.conv_clamp = conv_clamp |
|
|
|
def forward(self, x, style, noise_mode='random', gain=1): |
|
x = self.conv(x, style) |
|
|
|
assert noise_mode in ['random', 'const', 'none'] |
|
|
|
if self.use_noise: |
|
if noise_mode == 'random': |
|
xh, xw = x.size()[-2:] |
|
noise = torch.randn([x.shape[0], 1, xh, xw], device=x.device) \ |
|
* self.noise_strength |
|
if noise_mode == 'const': |
|
noise = self.noise_const * self.noise_strength |
|
x = x + noise |
|
|
|
act_gain = self.act_gain * gain |
|
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None |
|
out = bias_act(x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp) |
|
|
|
return out |
|
|
|
|
|
class ToRGB(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
style_dim, |
|
kernel_size=1, |
|
resample_filter=[1, 3, 3, 1], |
|
conv_clamp=None, |
|
demodulate=False): |
|
super().__init__() |
|
|
|
self.conv = ModulatedConv2d(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
style_dim=style_dim, |
|
demodulate=demodulate, |
|
resample_filter=resample_filter, |
|
conv_clamp=conv_clamp) |
|
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) |
|
self.register_buffer('resample_filter', setup_filter(resample_filter)) |
|
self.conv_clamp = conv_clamp |
|
|
|
def forward(self, x, style, skip=None): |
|
x = self.conv(x, style) |
|
out = bias_act(x, self.bias, clamp=self.conv_clamp) |
|
|
|
if skip is not None: |
|
if skip.shape != out.shape: |
|
skip = upsample2d(skip, self.resample_filter) |
|
out = out + skip |
|
|
|
return out |
|
|
|
|
|
def get_style_code(a, b): |
|
return torch.cat([a, b], dim=1) |
|
|
|
|
|
class DecBlockFirst(nn.Module): |
|
def __init__(self, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): |
|
super().__init__() |
|
self.fc = FullyConnectedLayer(in_features=in_channels * 2, |
|
out_features=in_channels * 4 ** 2, |
|
activation=activation) |
|
self.conv = StyleConv(in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=4, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB(in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, ws, gs, E_features, noise_mode='random'): |
|
x = self.fc(x).view(x.shape[0], -1, 4, 4) |
|
x = x + E_features[2] |
|
style = get_style_code(ws[:, 0], gs) |
|
x = self.conv(x, style, noise_mode=noise_mode) |
|
style = get_style_code(ws[:, 1], gs) |
|
img = self.toRGB(x, style, skip=None) |
|
|
|
return x, img |
|
|
|
|
|
class DecBlockFirstV2(nn.Module): |
|
def __init__(self, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): |
|
super().__init__() |
|
self.conv0 = Conv2dLayer(in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
self.conv1 = StyleConv(in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=4, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB(in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, ws, gs, E_features, noise_mode='random'): |
|
|
|
x = self.conv0(x) |
|
x = x + E_features[2] |
|
style = get_style_code(ws[:, 0], gs) |
|
x = self.conv1(x, style, noise_mode=noise_mode) |
|
style = get_style_code(ws[:, 1], gs) |
|
img = self.toRGB(x, style, skip=None) |
|
|
|
return x, img |
|
|
|
|
|
class DecBlock(nn.Module): |
|
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, |
|
img_channels): |
|
super().__init__() |
|
self.res = res |
|
|
|
self.conv0 = StyleConv(in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2 ** res, |
|
kernel_size=3, |
|
up=2, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.conv1 = StyleConv(in_channels=out_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2 ** res, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB(in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, img, ws, gs, E_features, noise_mode='random'): |
|
style = get_style_code(ws[:, self.res * 2 - 5], gs) |
|
x = self.conv0(x, style, noise_mode=noise_mode) |
|
x = x + E_features[self.res] |
|
style = get_style_code(ws[:, self.res * 2 - 4], gs) |
|
x = self.conv1(x, style, noise_mode=noise_mode) |
|
style = get_style_code(ws[:, self.res * 2 - 3], gs) |
|
img = self.toRGB(x, style, skip=img) |
|
|
|
return x, img |
|
|
|
|
|
class MappingNet(torch.nn.Module): |
|
def __init__(self, |
|
z_dim, |
|
c_dim, |
|
w_dim, |
|
num_ws, |
|
num_layers=8, |
|
embed_features=None, |
|
layer_features=None, |
|
activation='lrelu', |
|
lr_multiplier=0.01, |
|
w_avg_beta=0.995, |
|
): |
|
super().__init__() |
|
self.z_dim = z_dim |
|
self.c_dim = c_dim |
|
self.w_dim = w_dim |
|
self.num_ws = num_ws |
|
self.num_layers = num_layers |
|
self.w_avg_beta = w_avg_beta |
|
|
|
if embed_features is None: |
|
embed_features = w_dim |
|
if c_dim == 0: |
|
embed_features = 0 |
|
if layer_features is None: |
|
layer_features = w_dim |
|
features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim] |
|
|
|
if c_dim > 0: |
|
self.embed = FullyConnectedLayer(c_dim, embed_features) |
|
for idx in range(num_layers): |
|
in_features = features_list[idx] |
|
out_features = features_list[idx + 1] |
|
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier) |
|
setattr(self, f'fc{idx}', layer) |
|
|
|
if num_ws is not None and w_avg_beta is not None: |
|
self.register_buffer('w_avg', torch.zeros([w_dim])) |
|
|
|
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False): |
|
|
|
x = None |
|
with torch.autograd.profiler.record_function('input'): |
|
if self.z_dim > 0: |
|
x = normalize_2nd_moment(z.to(torch.float32)) |
|
if self.c_dim > 0: |
|
y = normalize_2nd_moment(self.embed(c.to(torch.float32))) |
|
x = torch.cat([x, y], dim=1) if x is not None else y |
|
|
|
|
|
for idx in range(self.num_layers): |
|
layer = getattr(self, f'fc{idx}') |
|
x = layer(x) |
|
|
|
|
|
if self.w_avg_beta is not None and self.training and not skip_w_avg_update: |
|
with torch.autograd.profiler.record_function('update_w_avg'): |
|
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)) |
|
|
|
|
|
if self.num_ws is not None: |
|
with torch.autograd.profiler.record_function('broadcast'): |
|
x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) |
|
|
|
|
|
if truncation_psi != 1: |
|
with torch.autograd.profiler.record_function('truncate'): |
|
assert self.w_avg_beta is not None |
|
if self.num_ws is None or truncation_cutoff is None: |
|
x = self.w_avg.lerp(x, truncation_psi) |
|
else: |
|
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi) |
|
|
|
return x |
|
|
|
|
|
class DisFromRGB(nn.Module): |
|
def __init__(self, in_channels, out_channels, activation): |
|
super().__init__() |
|
self.conv = Conv2dLayer(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
activation=activation, |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class DisBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, activation): |
|
super().__init__() |
|
self.conv0 = Conv2dLayer(in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
self.conv1 = Conv2dLayer(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
down=2, |
|
activation=activation, |
|
) |
|
self.skip = Conv2dLayer(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
down=2, |
|
bias=False, |
|
) |
|
|
|
def forward(self, x): |
|
skip = self.skip(x, gain=np.sqrt(0.5)) |
|
x = self.conv0(x) |
|
x = self.conv1(x, gain=np.sqrt(0.5)) |
|
out = skip + x |
|
|
|
return out |
|
|
|
|
|
class Discriminator(torch.nn.Module): |
|
def __init__(self, |
|
c_dim, |
|
img_resolution, |
|
img_channels, |
|
channel_base=32768, |
|
channel_max=512, |
|
channel_decay=1, |
|
cmap_dim=None, |
|
activation='lrelu', |
|
mbstd_group_size=4, |
|
mbstd_num_channels=1, |
|
): |
|
super().__init__() |
|
self.c_dim = c_dim |
|
self.img_resolution = img_resolution |
|
self.img_channels = img_channels |
|
|
|
resolution_log2 = int(np.log2(img_resolution)) |
|
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4 |
|
self.resolution_log2 = resolution_log2 |
|
|
|
def nf(stage): |
|
return np.clip(int(channel_base / 2 ** (stage * channel_decay)), 1, channel_max) |
|
|
|
if cmap_dim == None: |
|
cmap_dim = nf(2) |
|
if c_dim == 0: |
|
cmap_dim = 0 |
|
self.cmap_dim = cmap_dim |
|
|
|
if c_dim > 0: |
|
self.mapping = MappingNet(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None) |
|
|
|
Dis = [DisFromRGB(img_channels + 1, nf(resolution_log2), activation)] |
|
for res in range(resolution_log2, 2, -1): |
|
Dis.append(DisBlock(nf(res), nf(res - 1), activation)) |
|
|
|
if mbstd_num_channels > 0: |
|
Dis.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels)) |
|
Dis.append(Conv2dLayer(nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation)) |
|
self.Dis = nn.Sequential(*Dis) |
|
|
|
self.fc0 = FullyConnectedLayer(nf(2) * 4 ** 2, nf(2), activation=activation) |
|
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim) |
|
|
|
def forward(self, images_in, masks_in, c): |
|
x = torch.cat([masks_in - 0.5, images_in], dim=1) |
|
x = self.Dis(x) |
|
x = self.fc1(self.fc0(x.flatten(start_dim=1))) |
|
|
|
if self.c_dim > 0: |
|
cmap = self.mapping(None, c) |
|
|
|
if self.cmap_dim > 0: |
|
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) |
|
|
|
return x |
|
|
|
|
|
def nf(stage, channel_base=32768, channel_decay=1.0, channel_max=512): |
|
NF = {512: 64, 256: 128, 128: 256, 64: 512, 32: 512, 16: 512, 8: 512, 4: 512} |
|
return NF[2 ** stage] |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = FullyConnectedLayer(in_features=in_features, out_features=hidden_features, activation='lrelu') |
|
self.fc2 = FullyConnectedLayer(in_features=hidden_features, out_features=out_features) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size: int, H: int, W: int): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
|
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class Conv2dLayerPartial(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
bias=True, |
|
activation='linear', |
|
up=1, |
|
down=1, |
|
resample_filter=[1, 3, 3, 1], |
|
conv_clamp=None, |
|
trainable=True, |
|
): |
|
super().__init__() |
|
self.conv = Conv2dLayer(in_channels, out_channels, kernel_size, bias, activation, up, down, resample_filter, |
|
conv_clamp, trainable) |
|
|
|
self.weight_maskUpdater = torch.ones(1, 1, kernel_size, kernel_size) |
|
self.slide_winsize = kernel_size ** 2 |
|
self.stride = down |
|
self.padding = kernel_size // 2 if kernel_size % 2 == 1 else 0 |
|
|
|
def forward(self, x, mask=None): |
|
if mask is not None: |
|
with torch.no_grad(): |
|
if self.weight_maskUpdater.type() != x.type(): |
|
self.weight_maskUpdater = self.weight_maskUpdater.to(x) |
|
update_mask = F.conv2d(mask, self.weight_maskUpdater, bias=None, stride=self.stride, |
|
padding=self.padding) |
|
mask_ratio = self.slide_winsize / (update_mask + 1e-8) |
|
update_mask = torch.clamp(update_mask, 0, 1) |
|
mask_ratio = torch.mul(mask_ratio, update_mask) |
|
x = self.conv(x) |
|
x = torch.mul(x, mask_ratio) |
|
return x, update_mask |
|
else: |
|
x = self.conv(x) |
|
return x, None |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, dim, window_size, num_heads, down_ratio=1, qkv_bias=True, qk_scale=None, attn_drop=0., |
|
proj_drop=0.): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.q = FullyConnectedLayer(in_features=dim, out_features=dim) |
|
self.k = FullyConnectedLayer(in_features=dim, out_features=dim) |
|
self.v = FullyConnectedLayer(in_features=dim, out_features=dim) |
|
self.proj = FullyConnectedLayer(in_features=dim, out_features=dim) |
|
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask_windows=None, mask=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
norm_x = F.normalize(x, p=2.0, dim=-1) |
|
q = self.q(norm_x).reshape(B_, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
k = self.k(norm_x).view(B_, -1, self.num_heads, C // self.num_heads).permute(0, 2, 3, 1) |
|
v = self.v(x).view(B_, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
attn = (q @ k) * self.scale |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
|
|
if mask_windows is not None: |
|
attn_mask_windows = mask_windows.squeeze(-1).unsqueeze(1).unsqueeze(1) |
|
attn = attn + attn_mask_windows.masked_fill(attn_mask_windows == 0, float(-100.0)).masked_fill( |
|
attn_mask_windows == 1, float(0.0)) |
|
with torch.no_grad(): |
|
mask_windows = torch.clamp(torch.sum(mask_windows, dim=1, keepdim=True), 0, 1).repeat(1, N, 1) |
|
|
|
attn = self.softmax(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
return x, mask_windows |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
r""" Swin Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, num_heads, down_ratio=1, window_size=7, shift_size=0, |
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
if min(self.input_resolution) <= self.window_size: |
|
|
|
self.shift_size = 0 |
|
self.window_size = min(self.input_resolution) |
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
if self.shift_size > 0: |
|
down_ratio = 1 |
|
self.attn = WindowAttention(dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, |
|
down_ratio=down_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, |
|
proj_drop=drop) |
|
|
|
self.fuse = FullyConnectedLayer(in_features=dim * 2, out_features=dim, activation='lrelu') |
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if self.shift_size > 0: |
|
attn_mask = self.calculate_mask(self.input_resolution) |
|
else: |
|
attn_mask = None |
|
|
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
def calculate_mask(self, x_size): |
|
|
|
H, W = x_size |
|
img_mask = torch.zeros((1, H, W, 1)) |
|
h_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
w_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
|
|
return attn_mask |
|
|
|
def forward(self, x, x_size, mask=None): |
|
|
|
H, W = x_size |
|
B, L, C = x.shape |
|
|
|
|
|
shortcut = x |
|
x = x.view(B, H, W, C) |
|
if mask is not None: |
|
mask = mask.view(B, H, W, 1) |
|
|
|
|
|
if self.shift_size > 0: |
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
if mask is not None: |
|
shifted_mask = torch.roll(mask, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
else: |
|
shifted_x = x |
|
if mask is not None: |
|
shifted_mask = mask |
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |
|
if mask is not None: |
|
mask_windows = window_partition(shifted_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size, 1) |
|
else: |
|
mask_windows = None |
|
|
|
|
|
if self.input_resolution == x_size: |
|
attn_windows, mask_windows = self.attn(x_windows, mask_windows, |
|
mask=self.attn_mask) |
|
else: |
|
attn_windows, mask_windows = self.attn(x_windows, mask_windows, mask=self.calculate_mask(x_size).to( |
|
x.device)) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, H, W) |
|
if mask is not None: |
|
mask_windows = mask_windows.view(-1, self.window_size, self.window_size, 1) |
|
shifted_mask = window_reverse(mask_windows, self.window_size, H, W) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
if mask is not None: |
|
mask = torch.roll(shifted_mask, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
if mask is not None: |
|
mask = shifted_mask |
|
x = x.view(B, H * W, C) |
|
if mask is not None: |
|
mask = mask.view(B, H * W, 1) |
|
|
|
|
|
x = self.fuse(torch.cat([shortcut, x], dim=-1)) |
|
x = self.mlp(x) |
|
|
|
return x, mask |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
def __init__(self, in_channels, out_channels, down=2): |
|
super().__init__() |
|
self.conv = Conv2dLayerPartial(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation='lrelu', |
|
down=down, |
|
) |
|
self.down = down |
|
|
|
def forward(self, x, x_size, mask=None): |
|
x = token2feature(x, x_size) |
|
if mask is not None: |
|
mask = token2feature(mask, x_size) |
|
x, mask = self.conv(x, mask) |
|
if self.down != 1: |
|
ratio = 1 / self.down |
|
x_size = (int(x_size[0] * ratio), int(x_size[1] * ratio)) |
|
x = feature2token(x) |
|
if mask is not None: |
|
mask = feature2token(mask) |
|
return x, x_size, mask |
|
|
|
|
|
class PatchUpsampling(nn.Module): |
|
def __init__(self, in_channels, out_channels, up=2): |
|
super().__init__() |
|
self.conv = Conv2dLayerPartial(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation='lrelu', |
|
up=up, |
|
) |
|
self.up = up |
|
|
|
def forward(self, x, x_size, mask=None): |
|
x = token2feature(x, x_size) |
|
if mask is not None: |
|
mask = token2feature(mask, x_size) |
|
x, mask = self.conv(x, mask) |
|
if self.up != 1: |
|
x_size = (int(x_size[0] * self.up), int(x_size[1] * self.up)) |
|
x = feature2token(x) |
|
if mask is not None: |
|
mask = feature2token(mask) |
|
return x, x_size, mask |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, depth, num_heads, window_size, down_ratio=1, |
|
mlp_ratio=2., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
if downsample is not None: |
|
|
|
self.downsample = downsample |
|
else: |
|
self.downsample = None |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
SwinTransformerBlock(dim=dim, input_resolution=input_resolution, |
|
num_heads=num_heads, down_ratio=down_ratio, window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop, attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
|
|
self.conv = Conv2dLayerPartial(in_channels=dim, out_channels=dim, kernel_size=3, activation='lrelu') |
|
|
|
def forward(self, x, x_size, mask=None): |
|
if self.downsample is not None: |
|
x, x_size, mask = self.downsample(x, x_size, mask) |
|
identity = x |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x, mask = checkpoint.checkpoint(blk, x, x_size, mask) |
|
else: |
|
x, mask = blk(x, x_size, mask) |
|
if mask is not None: |
|
mask = token2feature(mask, x_size) |
|
x, mask = self.conv(token2feature(x, x_size), mask) |
|
x = feature2token(x) + identity |
|
if mask is not None: |
|
mask = feature2token(mask) |
|
return x, x_size, mask |
|
|
|
|
|
class ToToken(nn.Module): |
|
def __init__(self, in_channels=3, dim=128, kernel_size=5, stride=1): |
|
super().__init__() |
|
|
|
self.proj = Conv2dLayerPartial(in_channels=in_channels, out_channels=dim, kernel_size=kernel_size, |
|
activation='lrelu') |
|
|
|
def forward(self, x, mask): |
|
x, mask = self.proj(x, mask) |
|
|
|
return x, mask |
|
|
|
|
|
class EncFromRGB(nn.Module): |
|
def __init__(self, in_channels, out_channels, activation): |
|
super().__init__() |
|
self.conv0 = Conv2dLayer(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
activation=activation, |
|
) |
|
self.conv1 = Conv2dLayer(in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv0(x) |
|
x = self.conv1(x) |
|
|
|
return x |
|
|
|
|
|
class ConvBlockDown(nn.Module): |
|
def __init__(self, in_channels, out_channels, activation): |
|
super().__init__() |
|
|
|
self.conv0 = Conv2dLayer(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
down=2, |
|
) |
|
self.conv1 = Conv2dLayer(in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv0(x) |
|
x = self.conv1(x) |
|
|
|
return x |
|
|
|
|
|
def token2feature(x, x_size): |
|
B, N, C = x.shape |
|
h, w = x_size |
|
x = x.permute(0, 2, 1).reshape(B, C, h, w) |
|
return x |
|
|
|
|
|
def feature2token(x): |
|
B, C, H, W = x.shape |
|
x = x.view(B, C, -1).transpose(1, 2) |
|
return x |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, res_log2, img_channels, activation, patch_size=5, channels=16, drop_path_rate=0.1): |
|
super().__init__() |
|
|
|
self.resolution = [] |
|
|
|
for idx, i in enumerate(range(res_log2, 3, -1)): |
|
res = 2 ** i |
|
self.resolution.append(res) |
|
if i == res_log2: |
|
block = EncFromRGB(img_channels * 2 + 1, nf(i), activation) |
|
else: |
|
block = ConvBlockDown(nf(i + 1), nf(i), activation) |
|
setattr(self, 'EncConv_Block_%dx%d' % (res, res), block) |
|
|
|
def forward(self, x): |
|
out = {} |
|
for res in self.resolution: |
|
res_log2 = int(np.log2(res)) |
|
x = getattr(self, 'EncConv_Block_%dx%d' % (res, res))(x) |
|
out[res_log2] = x |
|
|
|
return out |
|
|
|
|
|
class ToStyle(nn.Module): |
|
def __init__(self, in_channels, out_channels, activation, drop_rate): |
|
super().__init__() |
|
self.conv = nn.Sequential( |
|
Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, |
|
down=2), |
|
Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, |
|
down=2), |
|
Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, |
|
down=2), |
|
) |
|
|
|
self.pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = FullyConnectedLayer(in_features=in_channels, |
|
out_features=out_channels, |
|
activation=activation) |
|
|
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.pool(x) |
|
x = self.fc(x.flatten(start_dim=1)) |
|
|
|
|
|
return x |
|
|
|
|
|
class DecBlockFirstV2(nn.Module): |
|
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): |
|
super().__init__() |
|
self.res = res |
|
|
|
self.conv0 = Conv2dLayer(in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=3, |
|
activation=activation, |
|
) |
|
self.conv1 = StyleConv(in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2 ** res, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB(in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, ws, gs, E_features, noise_mode='random'): |
|
|
|
x = self.conv0(x) |
|
x = x + E_features[self.res] |
|
style = get_style_code(ws[:, 0], gs) |
|
x = self.conv1(x, style, noise_mode=noise_mode) |
|
style = get_style_code(ws[:, 1], gs) |
|
img = self.toRGB(x, style, skip=None) |
|
|
|
return x, img |
|
|
|
|
|
class DecBlock(nn.Module): |
|
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, |
|
img_channels): |
|
super().__init__() |
|
self.res = res |
|
|
|
self.conv0 = StyleConv(in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2 ** res, |
|
kernel_size=3, |
|
up=2, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.conv1 = StyleConv(in_channels=out_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2 ** res, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB(in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, img, ws, gs, E_features, noise_mode='random'): |
|
style = get_style_code(ws[:, self.res * 2 - 9], gs) |
|
x = self.conv0(x, style, noise_mode=noise_mode) |
|
x = x + E_features[self.res] |
|
style = get_style_code(ws[:, self.res * 2 - 8], gs) |
|
x = self.conv1(x, style, noise_mode=noise_mode) |
|
style = get_style_code(ws[:, self.res * 2 - 7], gs) |
|
img = self.toRGB(x, style, skip=img) |
|
|
|
return x, img |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, res_log2, activation, style_dim, use_noise, demodulate, img_channels): |
|
super().__init__() |
|
self.Dec_16x16 = DecBlockFirstV2(4, nf(4), nf(4), activation, style_dim, use_noise, demodulate, img_channels) |
|
for res in range(5, res_log2 + 1): |
|
setattr(self, 'Dec_%dx%d' % (2 ** res, 2 ** res), |
|
DecBlock(res, nf(res - 1), nf(res), activation, style_dim, use_noise, demodulate, img_channels)) |
|
self.res_log2 = res_log2 |
|
|
|
def forward(self, x, ws, gs, E_features, noise_mode='random'): |
|
x, img = self.Dec_16x16(x, ws, gs, E_features, noise_mode=noise_mode) |
|
for res in range(5, self.res_log2 + 1): |
|
block = getattr(self, 'Dec_%dx%d' % (2 ** res, 2 ** res)) |
|
x, img = block(x, img, ws, gs, E_features, noise_mode=noise_mode) |
|
|
|
return img |
|
|
|
|
|
class DecStyleBlock(nn.Module): |
|
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): |
|
super().__init__() |
|
self.res = res |
|
|
|
self.conv0 = StyleConv(in_channels=in_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2 ** res, |
|
kernel_size=3, |
|
up=2, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.conv1 = StyleConv(in_channels=out_channels, |
|
out_channels=out_channels, |
|
style_dim=style_dim, |
|
resolution=2 ** res, |
|
kernel_size=3, |
|
use_noise=use_noise, |
|
activation=activation, |
|
demodulate=demodulate, |
|
) |
|
self.toRGB = ToRGB(in_channels=out_channels, |
|
out_channels=img_channels, |
|
style_dim=style_dim, |
|
kernel_size=1, |
|
demodulate=False, |
|
) |
|
|
|
def forward(self, x, img, style, skip, noise_mode='random'): |
|
x = self.conv0(x, style, noise_mode=noise_mode) |
|
x = x + skip |
|
x = self.conv1(x, style, noise_mode=noise_mode) |
|
img = self.toRGB(x, style, skip=img) |
|
|
|
return x, img |
|
|
|
|
|
class FirstStage(nn.Module): |
|
def __init__(self, img_channels, img_resolution=256, dim=180, w_dim=512, use_noise=False, demodulate=True, |
|
activation='lrelu'): |
|
super().__init__() |
|
res = 64 |
|
|
|
self.conv_first = Conv2dLayerPartial(in_channels=img_channels + 1, out_channels=dim, kernel_size=3, |
|
activation=activation) |
|
self.enc_conv = nn.ModuleList() |
|
down_time = int(np.log2(img_resolution // res)) |
|
|
|
for i in range(down_time): |
|
self.enc_conv.append( |
|
Conv2dLayerPartial(in_channels=dim, out_channels=dim, kernel_size=3, down=2, activation=activation) |
|
) |
|
|
|
|
|
depths = [2, 3, 4, 3, 2] |
|
ratios = [1, 1 / 2, 1 / 2, 2, 2] |
|
num_heads = 6 |
|
window_sizes = [8, 16, 16, 16, 8] |
|
drop_path_rate = 0.1 |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
self.tran = nn.ModuleList() |
|
for i, depth in enumerate(depths): |
|
res = int(res * ratios[i]) |
|
if ratios[i] < 1: |
|
merge = PatchMerging(dim, dim, down=int(1 / ratios[i])) |
|
elif ratios[i] > 1: |
|
merge = PatchUpsampling(dim, dim, up=ratios[i]) |
|
else: |
|
merge = None |
|
self.tran.append( |
|
BasicLayer(dim=dim, input_resolution=[res, res], depth=depth, num_heads=num_heads, |
|
window_size=window_sizes[i], drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])], |
|
downsample=merge) |
|
) |
|
|
|
|
|
down_conv = [] |
|
for i in range(int(np.log2(16))): |
|
down_conv.append( |
|
Conv2dLayer(in_channels=dim, out_channels=dim, kernel_size=3, down=2, activation=activation)) |
|
down_conv.append(nn.AdaptiveAvgPool2d((1, 1))) |
|
self.down_conv = nn.Sequential(*down_conv) |
|
self.to_style = FullyConnectedLayer(in_features=dim, out_features=dim * 2, activation=activation) |
|
self.ws_style = FullyConnectedLayer(in_features=w_dim, out_features=dim, activation=activation) |
|
self.to_square = FullyConnectedLayer(in_features=dim, out_features=16 * 16, activation=activation) |
|
|
|
style_dim = dim * 3 |
|
self.dec_conv = nn.ModuleList() |
|
for i in range(down_time): |
|
res = res * 2 |
|
self.dec_conv.append( |
|
DecStyleBlock(res, dim, dim, activation, style_dim, use_noise, demodulate, img_channels)) |
|
|
|
def forward(self, images_in, masks_in, ws, noise_mode='random'): |
|
x = torch.cat([masks_in - 0.5, images_in * masks_in], dim=1) |
|
|
|
skips = [] |
|
x, mask = self.conv_first(x, masks_in) |
|
skips.append(x) |
|
for i, block in enumerate(self.enc_conv): |
|
x, mask = block(x, mask) |
|
if i != len(self.enc_conv) - 1: |
|
skips.append(x) |
|
|
|
x_size = x.size()[-2:] |
|
x = feature2token(x) |
|
mask = feature2token(mask) |
|
mid = len(self.tran) // 2 |
|
for i, block in enumerate(self.tran): |
|
if i < mid: |
|
x, x_size, mask = block(x, x_size, mask) |
|
skips.append(x) |
|
elif i > mid: |
|
x, x_size, mask = block(x, x_size, None) |
|
x = x + skips[mid - i] |
|
else: |
|
x, x_size, mask = block(x, x_size, None) |
|
|
|
mul_map = torch.ones_like(x) * 0.5 |
|
mul_map = F.dropout(mul_map, training=True) |
|
ws = self.ws_style(ws[:, -1]) |
|
add_n = self.to_square(ws).unsqueeze(1) |
|
add_n = F.interpolate(add_n, size=x.size(1), mode='linear', align_corners=False).squeeze(1).unsqueeze( |
|
-1) |
|
x = x * mul_map + add_n * (1 - mul_map) |
|
gs = self.to_style(self.down_conv(token2feature(x, x_size)).flatten(start_dim=1)) |
|
style = torch.cat([gs, ws], dim=1) |
|
|
|
x = token2feature(x, x_size).contiguous() |
|
img = None |
|
for i, block in enumerate(self.dec_conv): |
|
x, img = block(x, img, style, skips[len(self.dec_conv) - i - 1], noise_mode=noise_mode) |
|
|
|
|
|
img = img * (1 - masks_in) + images_in * masks_in |
|
|
|
return img |
|
|
|
|
|
class SynthesisNet(nn.Module): |
|
def __init__(self, |
|
w_dim, |
|
img_resolution, |
|
img_channels=3, |
|
channel_base=32768, |
|
channel_decay=1.0, |
|
channel_max=512, |
|
activation='lrelu', |
|
drop_rate=0.5, |
|
use_noise=False, |
|
demodulate=True, |
|
): |
|
super().__init__() |
|
resolution_log2 = int(np.log2(img_resolution)) |
|
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4 |
|
|
|
self.num_layers = resolution_log2 * 2 - 3 * 2 |
|
self.img_resolution = img_resolution |
|
self.resolution_log2 = resolution_log2 |
|
|
|
|
|
self.first_stage = FirstStage(img_channels, img_resolution=img_resolution, w_dim=w_dim, use_noise=False, |
|
demodulate=demodulate) |
|
|
|
|
|
self.enc = Encoder(resolution_log2, img_channels, activation, patch_size=5, channels=16) |
|
self.to_square = FullyConnectedLayer(in_features=w_dim, out_features=16 * 16, activation=activation) |
|
self.to_style = ToStyle(in_channels=nf(4), out_channels=nf(2) * 2, activation=activation, drop_rate=drop_rate) |
|
style_dim = w_dim + nf(2) * 2 |
|
self.dec = Decoder(resolution_log2, activation, style_dim, use_noise, demodulate, img_channels) |
|
|
|
def forward(self, images_in, masks_in, ws, noise_mode='random', return_stg1=False): |
|
out_stg1 = self.first_stage(images_in, masks_in, ws, noise_mode=noise_mode) |
|
|
|
|
|
x = images_in * masks_in + out_stg1 * (1 - masks_in) |
|
x = torch.cat([masks_in - 0.5, x, images_in * masks_in], dim=1) |
|
E_features = self.enc(x) |
|
|
|
fea_16 = E_features[4] |
|
mul_map = torch.ones_like(fea_16) * 0.5 |
|
mul_map = F.dropout(mul_map, training=True) |
|
add_n = self.to_square(ws[:, 0]).view(-1, 16, 16).unsqueeze(1) |
|
add_n = F.interpolate(add_n, size=fea_16.size()[-2:], mode='bilinear', align_corners=False) |
|
fea_16 = fea_16 * mul_map + add_n * (1 - mul_map) |
|
E_features[4] = fea_16 |
|
|
|
|
|
gs = self.to_style(fea_16) |
|
|
|
|
|
img = self.dec(fea_16, ws, gs, E_features, noise_mode=noise_mode) |
|
|
|
|
|
img = img * (1 - masks_in) + images_in * masks_in |
|
|
|
if not return_stg1: |
|
return img |
|
else: |
|
return img, out_stg1 |
|
|
|
|
|
class Generator(nn.Module): |
|
def __init__(self, |
|
z_dim, |
|
c_dim, |
|
w_dim, |
|
img_resolution, |
|
img_channels, |
|
synthesis_kwargs={}, |
|
mapping_kwargs={}, |
|
): |
|
super().__init__() |
|
self.z_dim = z_dim |
|
self.c_dim = c_dim |
|
self.w_dim = w_dim |
|
self.img_resolution = img_resolution |
|
self.img_channels = img_channels |
|
|
|
self.synthesis = SynthesisNet(w_dim=w_dim, |
|
img_resolution=img_resolution, |
|
img_channels=img_channels, |
|
**synthesis_kwargs) |
|
self.mapping = MappingNet(z_dim=z_dim, |
|
c_dim=c_dim, |
|
w_dim=w_dim, |
|
num_ws=self.synthesis.num_layers, |
|
**mapping_kwargs) |
|
|
|
def forward(self, images_in, masks_in, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False, |
|
noise_mode='none', return_stg1=False): |
|
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, |
|
skip_w_avg_update=skip_w_avg_update) |
|
img = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode) |
|
return img |
|
|
|
|
|
class Discriminator(torch.nn.Module): |
|
def __init__(self, |
|
c_dim, |
|
img_resolution, |
|
img_channels, |
|
channel_base=32768, |
|
channel_max=512, |
|
channel_decay=1, |
|
cmap_dim=None, |
|
activation='lrelu', |
|
mbstd_group_size=4, |
|
mbstd_num_channels=1, |
|
): |
|
super().__init__() |
|
self.c_dim = c_dim |
|
self.img_resolution = img_resolution |
|
self.img_channels = img_channels |
|
|
|
resolution_log2 = int(np.log2(img_resolution)) |
|
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4 |
|
self.resolution_log2 = resolution_log2 |
|
|
|
if cmap_dim == None: |
|
cmap_dim = nf(2) |
|
if c_dim == 0: |
|
cmap_dim = 0 |
|
self.cmap_dim = cmap_dim |
|
|
|
if c_dim > 0: |
|
self.mapping = MappingNet(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None) |
|
|
|
Dis = [DisFromRGB(img_channels + 1, nf(resolution_log2), activation)] |
|
for res in range(resolution_log2, 2, -1): |
|
Dis.append(DisBlock(nf(res), nf(res - 1), activation)) |
|
|
|
if mbstd_num_channels > 0: |
|
Dis.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels)) |
|
Dis.append(Conv2dLayer(nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation)) |
|
self.Dis = nn.Sequential(*Dis) |
|
|
|
self.fc0 = FullyConnectedLayer(nf(2) * 4 ** 2, nf(2), activation=activation) |
|
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim) |
|
|
|
|
|
Dis_stg1 = [DisFromRGB(img_channels + 1, nf(resolution_log2) // 2, activation)] |
|
for res in range(resolution_log2, 2, -1): |
|
Dis_stg1.append(DisBlock(nf(res) // 2, nf(res - 1) // 2, activation)) |
|
|
|
if mbstd_num_channels > 0: |
|
Dis_stg1.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels)) |
|
Dis_stg1.append(Conv2dLayer(nf(2) // 2 + mbstd_num_channels, nf(2) // 2, kernel_size=3, activation=activation)) |
|
self.Dis_stg1 = nn.Sequential(*Dis_stg1) |
|
|
|
self.fc0_stg1 = FullyConnectedLayer(nf(2) // 2 * 4 ** 2, nf(2) // 2, activation=activation) |
|
self.fc1_stg1 = FullyConnectedLayer(nf(2) // 2, 1 if cmap_dim == 0 else cmap_dim) |
|
|
|
def forward(self, images_in, masks_in, images_stg1, c): |
|
x = self.Dis(torch.cat([masks_in - 0.5, images_in], dim=1)) |
|
x = self.fc1(self.fc0(x.flatten(start_dim=1))) |
|
|
|
x_stg1 = self.Dis_stg1(torch.cat([masks_in - 0.5, images_stg1], dim=1)) |
|
x_stg1 = self.fc1_stg1(self.fc0_stg1(x_stg1.flatten(start_dim=1))) |
|
|
|
if self.c_dim > 0: |
|
cmap = self.mapping(None, c) |
|
|
|
if self.cmap_dim > 0: |
|
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) |
|
x_stg1 = (x_stg1 * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) |
|
|
|
return x, x_stg1 |
|
|
|
|
|
MAT_MODEL_URL = os.environ.get( |
|
"MAT_MODEL_URL", |
|
"https://github.com/Sanster/models/releases/download/add_mat/Places_512_FullData_G.pth", |
|
) |
|
|
|
|
|
class MAT(InpaintModel): |
|
min_size = 512 |
|
pad_mod = 512 |
|
pad_to_square = True |
|
|
|
def init_model(self, device, **kwargs): |
|
seed = 240 |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
|
|
G = Generator(z_dim=512, c_dim=0, w_dim=512, img_resolution=512, img_channels=3) |
|
self.model = load_model(G, MAT_MODEL_URL, device) |
|
self.z = torch.from_numpy(np.random.randn(1, G.z_dim)).to(device) |
|
self.label = torch.zeros([1, self.model.c_dim], device=device) |
|
|
|
@staticmethod |
|
def is_downloaded() -> bool: |
|
return os.path.exists(get_cache_path_by_url(MAT_MODEL_URL)) |
|
|
|
def forward(self, image, mask, config: Config): |
|
"""Input images and output images have same size |
|
images: [H, W, C] RGB |
|
masks: [H, W] mask area == 255 |
|
return: BGR IMAGE |
|
""" |
|
|
|
image = norm_img(image) |
|
image = image * 2 - 1 |
|
|
|
mask = (mask > 127) * 255 |
|
mask = 255 - mask |
|
mask = norm_img(mask) |
|
|
|
image = torch.from_numpy(image).unsqueeze(0).to(self.device) |
|
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device) |
|
|
|
output = self.model(image, mask, self.z, self.label, truncation_psi=1, noise_mode='none') |
|
output = (output.permute(0, 2, 3, 1) * 127.5 + 127.5).round().clamp(0, 255).to(torch.uint8) |
|
output = output[0].cpu().numpy() |
|
cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return cur_res |
|
|