|
import gc |
|
|
|
import torch |
|
|
|
from lama_cleaner.model.fcf import FcF |
|
from lama_cleaner.model.lama import LaMa |
|
from lama_cleaner.model.ldm import LDM |
|
from lama_cleaner.model.manga import Manga |
|
from lama_cleaner.model.mat import MAT |
|
from lama_cleaner.model.opencv2 import OpenCV2 |
|
from lama_cleaner.model.paint_by_example import PaintByExample |
|
from lama_cleaner.model.sd import SD15, SD2 |
|
from lama_cleaner.model.zits import ZITS |
|
from lama_cleaner.schema import Config |
|
|
|
models = {"lama": LaMa, "ldm": LDM, "zits": ZITS, "mat": MAT, "fcf": FcF, "sd1.5": SD15, "cv2": OpenCV2, "manga": Manga, |
|
"sd2": SD2, "paint_by_example": PaintByExample} |
|
|
|
|
|
class ModelManager: |
|
def __init__(self, model_device, **kwargs): |
|
self.name = "lama" |
|
self.device = model_device |
|
self.kwargs = kwargs |
|
self.model = self.init_model(self.name, model_device, **kwargs) |
|
|
|
def init_model(self, name: str, device, **kwargs): |
|
if name in models: |
|
model = models[name](device, **kwargs) |
|
else: |
|
raise NotImplementedError(f"Not supported model: {name}") |
|
return model |
|
|
|
def is_downloaded(self, name: str) -> bool: |
|
if name in models: |
|
return models[name].is_downloaded() |
|
else: |
|
raise NotImplementedError(f"Not supported model: {name}") |
|
|
|
def __call__(self, image, mask, config: Config): |
|
return self.model(image, mask, config) |
|
|
|
def switch(self, new_name: str): |
|
if new_name == self.name: |
|
return |
|
try: |
|
if (torch.cuda.memory_allocated() > 0): |
|
|
|
torch.cuda.empty_cache() |
|
del self.model |
|
gc.collect() |
|
|
|
self.model = self.init_model(new_name, self.device, **self.kwargs) |
|
self.name = new_name |
|
except NotImplementedError as e: |
|
raise e |
|
|