|
import os |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.fft as fft |
|
import torch.nn.functional as F |
|
from torch import conv2d, nn |
|
|
|
from lama_cleaner.helper import load_model, get_cache_path_by_url, norm_img, boxes_from_mask, resize_max_size |
|
from lama_cleaner.model.base import InpaintModel |
|
from lama_cleaner.model.utils import setup_filter, _parse_scaling, _parse_padding, Conv2dLayer, FullyConnectedLayer, \ |
|
MinibatchStdLayer, activation_funcs, conv2d_resample, bias_act, upsample2d, normalize_2nd_moment, downsample2d |
|
from lama_cleaner.schema import Config |
|
|
|
|
|
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'): |
|
assert isinstance(x, torch.Tensor) |
|
return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain) |
|
|
|
|
|
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1): |
|
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops. |
|
""" |
|
|
|
assert isinstance(x, torch.Tensor) and x.ndim == 4 |
|
if f is None: |
|
f = torch.ones([1, 1], dtype=torch.float32, device=x.device) |
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] |
|
assert f.dtype == torch.float32 and not f.requires_grad |
|
batch_size, num_channels, in_height, in_width = x.shape |
|
upx, upy = _parse_scaling(up) |
|
downx, downy = _parse_scaling(down) |
|
padx0, padx1, pady0, pady1 = _parse_padding(padding) |
|
|
|
|
|
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1]) |
|
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1]) |
|
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx]) |
|
|
|
|
|
x = torch.nn.functional.pad(x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)]) |
|
x = x[:, :, max(-pady0, 0): x.shape[2] - max(-pady1, 0), max(-padx0, 0): x.shape[3] - max(-padx1, 0)] |
|
|
|
|
|
f = f * (gain ** (f.ndim / 2)) |
|
f = f.to(x.dtype) |
|
if not flip_filter: |
|
f = f.flip(list(range(f.ndim))) |
|
|
|
|
|
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim) |
|
if f.ndim == 4: |
|
x = conv2d(input=x, weight=f, groups=num_channels) |
|
else: |
|
x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels) |
|
x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels) |
|
|
|
|
|
x = x[:, :, ::downy, ::downx] |
|
return x |
|
|
|
|
|
class EncoderEpilogue(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
cmap_dim, |
|
z_dim, |
|
resolution, |
|
img_channels, |
|
architecture='resnet', |
|
mbstd_group_size=4, |
|
mbstd_num_channels=1, |
|
activation='lrelu', |
|
conv_clamp=None, |
|
): |
|
assert architecture in ['orig', 'skip', 'resnet'] |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.cmap_dim = cmap_dim |
|
self.resolution = resolution |
|
self.img_channels = img_channels |
|
self.architecture = architecture |
|
|
|
if architecture == 'skip': |
|
self.fromrgb = Conv2dLayer(self.img_channels, in_channels, kernel_size=1, activation=activation) |
|
self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size, |
|
num_channels=mbstd_num_channels) if mbstd_num_channels > 0 else None |
|
self.conv = Conv2dLayer(in_channels + mbstd_num_channels, in_channels, kernel_size=3, activation=activation, |
|
conv_clamp=conv_clamp) |
|
self.fc = FullyConnectedLayer(in_channels * (resolution ** 2), z_dim, activation=activation) |
|
self.dropout = torch.nn.Dropout(p=0.5) |
|
|
|
def forward(self, x, cmap, force_fp32=False): |
|
_ = force_fp32 |
|
dtype = torch.float32 |
|
memory_format = torch.contiguous_format |
|
|
|
|
|
x = x.to(dtype=dtype, memory_format=memory_format) |
|
|
|
|
|
if self.mbstd is not None: |
|
x = self.mbstd(x) |
|
const_e = self.conv(x) |
|
x = self.fc(const_e.flatten(1)) |
|
x = self.dropout(x) |
|
|
|
|
|
if self.cmap_dim > 0: |
|
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) |
|
|
|
assert x.dtype == dtype |
|
return x, const_e |
|
|
|
|
|
class EncoderBlock(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
tmp_channels, |
|
out_channels, |
|
resolution, |
|
img_channels, |
|
first_layer_idx, |
|
architecture='skip', |
|
activation='lrelu', |
|
resample_filter=[1, 3, 3, 1], |
|
conv_clamp=None, |
|
use_fp16=False, |
|
fp16_channels_last=False, |
|
freeze_layers=0, |
|
): |
|
assert in_channels in [0, tmp_channels] |
|
assert architecture in ['orig', 'skip', 'resnet'] |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.resolution = resolution |
|
self.img_channels = img_channels + 1 |
|
self.first_layer_idx = first_layer_idx |
|
self.architecture = architecture |
|
self.use_fp16 = use_fp16 |
|
self.channels_last = (use_fp16 and fp16_channels_last) |
|
self.register_buffer('resample_filter', setup_filter(resample_filter)) |
|
|
|
self.num_layers = 0 |
|
|
|
def trainable_gen(): |
|
while True: |
|
layer_idx = self.first_layer_idx + self.num_layers |
|
trainable = (layer_idx >= freeze_layers) |
|
self.num_layers += 1 |
|
yield trainable |
|
|
|
trainable_iter = trainable_gen() |
|
|
|
if in_channels == 0: |
|
self.fromrgb = Conv2dLayer(self.img_channels, tmp_channels, kernel_size=1, activation=activation, |
|
trainable=next(trainable_iter), conv_clamp=conv_clamp, |
|
channels_last=self.channels_last) |
|
|
|
self.conv0 = Conv2dLayer(tmp_channels, tmp_channels, kernel_size=3, activation=activation, |
|
trainable=next(trainable_iter), conv_clamp=conv_clamp, |
|
channels_last=self.channels_last) |
|
|
|
self.conv1 = Conv2dLayer(tmp_channels, out_channels, kernel_size=3, activation=activation, down=2, |
|
trainable=next(trainable_iter), resample_filter=resample_filter, conv_clamp=conv_clamp, |
|
channels_last=self.channels_last) |
|
|
|
if architecture == 'resnet': |
|
self.skip = Conv2dLayer(tmp_channels, out_channels, kernel_size=1, bias=False, down=2, |
|
trainable=next(trainable_iter), resample_filter=resample_filter, |
|
channels_last=self.channels_last) |
|
|
|
def forward(self, x, img, force_fp32=False): |
|
|
|
dtype = torch.float32 |
|
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format |
|
|
|
|
|
if x is not None: |
|
x = x.to(dtype=dtype, memory_format=memory_format) |
|
|
|
|
|
if self.in_channels == 0: |
|
img = img.to(dtype=dtype, memory_format=memory_format) |
|
y = self.fromrgb(img) |
|
x = x + y if x is not None else y |
|
img = downsample2d(img, self.resample_filter) if self.architecture == 'skip' else None |
|
|
|
|
|
if self.architecture == 'resnet': |
|
y = self.skip(x, gain=np.sqrt(0.5)) |
|
x = self.conv0(x) |
|
feat = x.clone() |
|
x = self.conv1(x, gain=np.sqrt(0.5)) |
|
x = y.add_(x) |
|
else: |
|
x = self.conv0(x) |
|
feat = x.clone() |
|
x = self.conv1(x) |
|
|
|
assert x.dtype == dtype |
|
return x, img, feat |
|
|
|
|
|
class EncoderNetwork(torch.nn.Module): |
|
def __init__(self, |
|
c_dim, |
|
z_dim, |
|
img_resolution, |
|
img_channels, |
|
architecture='orig', |
|
channel_base=16384, |
|
channel_max=512, |
|
num_fp16_res=0, |
|
conv_clamp=None, |
|
cmap_dim=None, |
|
block_kwargs={}, |
|
mapping_kwargs={}, |
|
epilogue_kwargs={}, |
|
): |
|
super().__init__() |
|
self.c_dim = c_dim |
|
self.z_dim = z_dim |
|
self.img_resolution = img_resolution |
|
self.img_resolution_log2 = int(np.log2(img_resolution)) |
|
self.img_channels = img_channels |
|
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)] |
|
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]} |
|
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8) |
|
|
|
if cmap_dim is None: |
|
cmap_dim = channels_dict[4] |
|
if c_dim == 0: |
|
cmap_dim = 0 |
|
|
|
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp) |
|
cur_layer_idx = 0 |
|
for res in self.block_resolutions: |
|
in_channels = channels_dict[res] if res < img_resolution else 0 |
|
tmp_channels = channels_dict[res] |
|
out_channels = channels_dict[res // 2] |
|
use_fp16 = (res >= fp16_resolution) |
|
use_fp16 = False |
|
block = EncoderBlock(in_channels, tmp_channels, out_channels, resolution=res, |
|
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs) |
|
setattr(self, f'b{res}', block) |
|
cur_layer_idx += block.num_layers |
|
if c_dim > 0: |
|
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, |
|
**mapping_kwargs) |
|
self.b4 = EncoderEpilogue(channels_dict[4], cmap_dim=cmap_dim, z_dim=z_dim * 2, resolution=4, **epilogue_kwargs, |
|
**common_kwargs) |
|
|
|
def forward(self, img, c, **block_kwargs): |
|
x = None |
|
feats = {} |
|
for res in self.block_resolutions: |
|
block = getattr(self, f'b{res}') |
|
x, img, feat = block(x, img, **block_kwargs) |
|
feats[res] = feat |
|
|
|
cmap = None |
|
if self.c_dim > 0: |
|
cmap = self.mapping(None, c) |
|
x, const_e = self.b4(x, cmap) |
|
feats[4] = const_e |
|
|
|
B, _ = x.shape |
|
z = torch.zeros((B, self.z_dim), requires_grad=False, dtype=x.dtype, |
|
device=x.device) |
|
return x, z, feats |
|
|
|
|
|
def fma(a, b, c): |
|
return _FusedMultiplyAdd.apply(a, b, c) |
|
|
|
|
|
class _FusedMultiplyAdd(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, a, b, c): |
|
out = torch.addcmul(c, a, b) |
|
ctx.save_for_backward(a, b) |
|
ctx.c_shape = c.shape |
|
return out |
|
|
|
@staticmethod |
|
def backward(ctx, dout): |
|
a, b = ctx.saved_tensors |
|
c_shape = ctx.c_shape |
|
da = None |
|
db = None |
|
dc = None |
|
|
|
if ctx.needs_input_grad[0]: |
|
da = _unbroadcast(dout * b, a.shape) |
|
|
|
if ctx.needs_input_grad[1]: |
|
db = _unbroadcast(dout * a, b.shape) |
|
|
|
if ctx.needs_input_grad[2]: |
|
dc = _unbroadcast(dout, c_shape) |
|
|
|
return da, db, dc |
|
|
|
|
|
def _unbroadcast(x, shape): |
|
extra_dims = x.ndim - len(shape) |
|
assert extra_dims >= 0 |
|
dim = [i for i in range(x.ndim) if x.shape[i] > 1 and (i < extra_dims or shape[i - extra_dims] == 1)] |
|
if len(dim): |
|
x = x.sum(dim=dim, keepdim=True) |
|
if extra_dims: |
|
x = x.reshape(-1, *x.shape[extra_dims + 1:]) |
|
assert x.shape == shape |
|
return x |
|
|
|
|
|
def modulated_conv2d( |
|
x, |
|
weight, |
|
styles, |
|
noise=None, |
|
up=1, |
|
down=1, |
|
padding=0, |
|
resample_filter=None, |
|
|
|
demodulate=True, |
|
flip_weight=True, |
|
fused_modconv=True, |
|
): |
|
batch_size = x.shape[0] |
|
out_channels, in_channels, kh, kw = weight.shape |
|
|
|
|
|
if x.dtype == torch.float16 and demodulate: |
|
weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1, 2, 3], |
|
keepdim=True)) |
|
styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) |
|
|
|
|
|
w = None |
|
dcoefs = None |
|
if demodulate or fused_modconv: |
|
w = weight.unsqueeze(0) |
|
w = w * styles.reshape(batch_size, 1, -1, 1, 1) |
|
if demodulate: |
|
dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt() |
|
if demodulate and fused_modconv: |
|
w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) |
|
|
|
if not fused_modconv: |
|
x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1) |
|
x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, |
|
padding=padding, flip_weight=flip_weight) |
|
if demodulate and noise is not None: |
|
x = fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype)) |
|
elif demodulate: |
|
x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1) |
|
elif noise is not None: |
|
x = x.add_(noise.to(x.dtype)) |
|
return x |
|
|
|
|
|
batch_size = int(batch_size) |
|
x = x.reshape(1, -1, *x.shape[2:]) |
|
w = w.reshape(-1, in_channels, kh, kw) |
|
x = conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, |
|
groups=batch_size, flip_weight=flip_weight) |
|
x = x.reshape(batch_size, -1, *x.shape[2:]) |
|
if noise is not None: |
|
x = x.add_(noise) |
|
return x |
|
|
|
|
|
class SynthesisLayer(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
w_dim, |
|
resolution, |
|
kernel_size=3, |
|
up=1, |
|
use_noise=True, |
|
activation='lrelu', |
|
resample_filter=[1, 3, 3, 1], |
|
conv_clamp=None, |
|
channels_last=False, |
|
): |
|
super().__init__() |
|
self.resolution = resolution |
|
self.up = up |
|
self.use_noise = use_noise |
|
self.activation = activation |
|
self.conv_clamp = conv_clamp |
|
self.register_buffer('resample_filter', setup_filter(resample_filter)) |
|
self.padding = kernel_size // 2 |
|
self.act_gain = activation_funcs[activation].def_gain |
|
|
|
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) |
|
memory_format = torch.channels_last if channels_last else torch.contiguous_format |
|
self.weight = torch.nn.Parameter( |
|
torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)) |
|
if use_noise: |
|
self.register_buffer('noise_const', torch.randn([resolution, resolution])) |
|
self.noise_strength = torch.nn.Parameter(torch.zeros([])) |
|
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) |
|
|
|
def forward(self, x, w, noise_mode='none', fused_modconv=True, gain=1): |
|
assert noise_mode in ['random', 'const', 'none'] |
|
in_resolution = self.resolution // self.up |
|
styles = self.affine(w) |
|
|
|
noise = None |
|
if self.use_noise and noise_mode == 'random': |
|
noise = torch.randn([x.shape[0], 1, self.resolution, self.resolution], |
|
device=x.device) * self.noise_strength |
|
if self.use_noise and noise_mode == 'const': |
|
noise = self.noise_const * self.noise_strength |
|
|
|
flip_weight = (self.up == 1) |
|
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up, |
|
padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, |
|
fused_modconv=fused_modconv) |
|
|
|
act_gain = self.act_gain * gain |
|
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None |
|
x = F.leaky_relu(x, negative_slope=0.2, inplace=False) |
|
if act_gain != 1: |
|
x = x * act_gain |
|
if act_clamp is not None: |
|
x = x.clamp(-act_clamp, act_clamp) |
|
return x |
|
|
|
|
|
class ToRGBLayer(torch.nn.Module): |
|
def __init__(self, in_channels, out_channels, w_dim, kernel_size=1, conv_clamp=None, channels_last=False): |
|
super().__init__() |
|
self.conv_clamp = conv_clamp |
|
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) |
|
memory_format = torch.channels_last if channels_last else torch.contiguous_format |
|
self.weight = torch.nn.Parameter( |
|
torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)) |
|
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) |
|
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) |
|
|
|
def forward(self, x, w, fused_modconv=True): |
|
styles = self.affine(w) * self.weight_gain |
|
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, demodulate=False, fused_modconv=fused_modconv) |
|
x = bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp) |
|
return x |
|
|
|
|
|
class SynthesisForeword(torch.nn.Module): |
|
def __init__(self, |
|
z_dim, |
|
resolution, |
|
in_channels, |
|
img_channels, |
|
architecture='skip', |
|
activation='lrelu', |
|
|
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.z_dim = z_dim |
|
self.resolution = resolution |
|
self.img_channels = img_channels |
|
self.architecture = architecture |
|
|
|
self.fc = FullyConnectedLayer(self.z_dim, (self.z_dim // 2) * 4 * 4, activation=activation) |
|
self.conv = SynthesisLayer(self.in_channels, self.in_channels, w_dim=(z_dim // 2) * 3, resolution=4) |
|
|
|
if architecture == 'skip': |
|
self.torgb = ToRGBLayer(self.in_channels, self.img_channels, kernel_size=1, w_dim=(z_dim // 2) * 3) |
|
|
|
def forward(self, x, ws, feats, img, force_fp32=False): |
|
_ = force_fp32 |
|
dtype = torch.float32 |
|
memory_format = torch.contiguous_format |
|
|
|
x_global = x.clone() |
|
|
|
x = self.fc(x) |
|
x = x.view(-1, self.z_dim // 2, 4, 4) |
|
x = x.to(dtype=dtype, memory_format=memory_format) |
|
|
|
|
|
x_skip = feats[4].clone() |
|
x = x + x_skip |
|
|
|
mod_vector = [] |
|
mod_vector.append(ws[:, 0]) |
|
mod_vector.append(x_global.clone()) |
|
mod_vector = torch.cat(mod_vector, dim=1) |
|
|
|
x = self.conv(x, mod_vector) |
|
|
|
mod_vector = [] |
|
mod_vector.append(ws[:, 2 * 2 - 3]) |
|
mod_vector.append(x_global.clone()) |
|
mod_vector = torch.cat(mod_vector, dim=1) |
|
|
|
if self.architecture == 'skip': |
|
img = self.torgb(x, mod_vector) |
|
img = img.to(dtype=torch.float32, memory_format=torch.contiguous_format) |
|
|
|
assert x.dtype == dtype |
|
return x, img |
|
|
|
|
|
class SELayer(nn.Module): |
|
def __init__(self, channel, reduction=16): |
|
super(SELayer, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = nn.Sequential( |
|
nn.Linear(channel, channel // reduction, bias=False), |
|
nn.ReLU(inplace=False), |
|
nn.Linear(channel // reduction, channel, bias=False), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
b, c, _, _ = x.size() |
|
y = self.avg_pool(x).view(b, c) |
|
y = self.fc(y).view(b, c, 1, 1) |
|
res = x * y.expand_as(x) |
|
return res |
|
|
|
|
|
class FourierUnit(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear', |
|
spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'): |
|
|
|
super(FourierUnit, self).__init__() |
|
self.groups = groups |
|
|
|
self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0), |
|
out_channels=out_channels * 2, |
|
kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False) |
|
self.relu = torch.nn.ReLU(inplace=False) |
|
|
|
|
|
self.use_se = use_se |
|
if use_se: |
|
if se_kwargs is None: |
|
se_kwargs = {} |
|
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs) |
|
|
|
self.spatial_scale_factor = spatial_scale_factor |
|
self.spatial_scale_mode = spatial_scale_mode |
|
self.spectral_pos_encoding = spectral_pos_encoding |
|
self.ffc3d = ffc3d |
|
self.fft_norm = fft_norm |
|
|
|
def forward(self, x): |
|
batch = x.shape[0] |
|
|
|
if self.spatial_scale_factor is not None: |
|
orig_size = x.shape[-2:] |
|
x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, |
|
align_corners=False) |
|
|
|
r_size = x.size() |
|
|
|
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1) |
|
ffted = fft.rfftn(x, dim=fft_dim, norm=self.fft_norm) |
|
ffted = torch.stack((ffted.real, ffted.imag), dim=-1) |
|
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() |
|
ffted = ffted.view((batch, -1,) + ffted.size()[3:]) |
|
|
|
if self.spectral_pos_encoding: |
|
height, width = ffted.shape[-2:] |
|
coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted) |
|
coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted) |
|
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1) |
|
|
|
if self.use_se: |
|
ffted = self.se(ffted) |
|
|
|
ffted = self.conv_layer(ffted) |
|
ffted = self.relu(ffted) |
|
|
|
ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute( |
|
0, 1, 3, 4, 2).contiguous() |
|
ffted = torch.complex(ffted[..., 0], ffted[..., 1]) |
|
|
|
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:] |
|
output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm) |
|
|
|
if self.spatial_scale_factor is not None: |
|
output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False) |
|
|
|
return output |
|
|
|
|
|
class SpectralTransform(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs): |
|
|
|
super(SpectralTransform, self).__init__() |
|
self.enable_lfu = enable_lfu |
|
if stride == 2: |
|
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2) |
|
else: |
|
self.downsample = nn.Identity() |
|
|
|
self.stride = stride |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels // |
|
2, kernel_size=1, groups=groups, bias=False), |
|
|
|
nn.ReLU(inplace=True) |
|
) |
|
self.fu = FourierUnit( |
|
out_channels // 2, out_channels // 2, groups, **fu_kwargs) |
|
if self.enable_lfu: |
|
self.lfu = FourierUnit( |
|
out_channels // 2, out_channels // 2, groups) |
|
self.conv2 = torch.nn.Conv2d( |
|
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False) |
|
|
|
def forward(self, x): |
|
|
|
x = self.downsample(x) |
|
x = self.conv1(x) |
|
output = self.fu(x) |
|
|
|
if self.enable_lfu: |
|
n, c, h, w = x.shape |
|
split_no = 2 |
|
split_s = h // split_no |
|
xs = torch.cat(torch.split( |
|
x[:, :c // 4], split_s, dim=-2), dim=1).contiguous() |
|
xs = torch.cat(torch.split(xs, split_s, dim=-1), |
|
dim=1).contiguous() |
|
xs = self.lfu(xs) |
|
xs = xs.repeat(1, 1, split_no, split_no).contiguous() |
|
else: |
|
xs = 0 |
|
|
|
output = self.conv2(x + output + xs) |
|
|
|
return output |
|
|
|
|
|
class FFC(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, |
|
ratio_gin, ratio_gout, stride=1, padding=0, |
|
dilation=1, groups=1, bias=False, enable_lfu=True, |
|
padding_type='reflect', gated=False, **spectral_kwargs): |
|
super(FFC, self).__init__() |
|
|
|
assert stride == 1 or stride == 2, "Stride should be 1 or 2." |
|
self.stride = stride |
|
|
|
in_cg = int(in_channels * ratio_gin) |
|
in_cl = in_channels - in_cg |
|
out_cg = int(out_channels * ratio_gout) |
|
out_cl = out_channels - out_cg |
|
|
|
|
|
|
|
self.ratio_gin = ratio_gin |
|
self.ratio_gout = ratio_gout |
|
self.global_in_num = in_cg |
|
|
|
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d |
|
self.convl2l = module(in_cl, out_cl, kernel_size, |
|
stride, padding, dilation, groups, bias, padding_mode=padding_type) |
|
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d |
|
self.convl2g = module(in_cl, out_cg, kernel_size, |
|
stride, padding, dilation, groups, bias, padding_mode=padding_type) |
|
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d |
|
self.convg2l = module(in_cg, out_cl, kernel_size, |
|
stride, padding, dilation, groups, bias, padding_mode=padding_type) |
|
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform |
|
self.convg2g = module( |
|
in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs) |
|
|
|
self.gated = gated |
|
module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d |
|
self.gate = module(in_channels, 2, 1) |
|
|
|
def forward(self, x, fname=None): |
|
x_l, x_g = x if type(x) is tuple else (x, 0) |
|
out_xl, out_xg = 0, 0 |
|
|
|
if self.gated: |
|
total_input_parts = [x_l] |
|
if torch.is_tensor(x_g): |
|
total_input_parts.append(x_g) |
|
total_input = torch.cat(total_input_parts, dim=1) |
|
|
|
gates = torch.sigmoid(self.gate(total_input)) |
|
g2l_gate, l2g_gate = gates.chunk(2, dim=1) |
|
else: |
|
g2l_gate, l2g_gate = 1, 1 |
|
|
|
spec_x = self.convg2g(x_g) |
|
|
|
if self.ratio_gout != 1: |
|
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate |
|
if self.ratio_gout != 0: |
|
out_xg = self.convl2g(x_l) * l2g_gate + spec_x |
|
|
|
return out_xl, out_xg |
|
|
|
|
|
class FFC_BN_ACT(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, |
|
kernel_size, ratio_gin, ratio_gout, |
|
stride=1, padding=0, dilation=1, groups=1, bias=False, |
|
norm_layer=nn.SyncBatchNorm, activation_layer=nn.Identity, |
|
padding_type='reflect', |
|
enable_lfu=True, **kwargs): |
|
super(FFC_BN_ACT, self).__init__() |
|
self.ffc = FFC(in_channels, out_channels, kernel_size, |
|
ratio_gin, ratio_gout, stride, padding, dilation, |
|
groups, bias, enable_lfu, padding_type=padding_type, **kwargs) |
|
lnorm = nn.Identity if ratio_gout == 1 else norm_layer |
|
gnorm = nn.Identity if ratio_gout == 0 else norm_layer |
|
global_channels = int(out_channels * ratio_gout) |
|
|
|
|
|
|
|
lact = nn.Identity if ratio_gout == 1 else activation_layer |
|
gact = nn.Identity if ratio_gout == 0 else activation_layer |
|
self.act_l = lact(inplace=True) |
|
self.act_g = gact(inplace=True) |
|
|
|
def forward(self, x, fname=None): |
|
x_l, x_g = self.ffc(x, fname=fname, ) |
|
x_l = self.act_l(x_l) |
|
x_g = self.act_g(x_g) |
|
return x_l, x_g |
|
|
|
|
|
class FFCResnetBlock(nn.Module): |
|
def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1, |
|
spatial_transform_kwargs=None, inline=False, ratio_gin=0.75, ratio_gout=0.75): |
|
super().__init__() |
|
self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation, |
|
norm_layer=norm_layer, |
|
activation_layer=activation_layer, |
|
padding_type=padding_type, |
|
ratio_gin=ratio_gin, ratio_gout=ratio_gout) |
|
self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation, |
|
norm_layer=norm_layer, |
|
activation_layer=activation_layer, |
|
padding_type=padding_type, |
|
ratio_gin=ratio_gin, ratio_gout=ratio_gout) |
|
self.inline = inline |
|
|
|
def forward(self, x, fname=None): |
|
if self.inline: |
|
x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:] |
|
else: |
|
x_l, x_g = x if type(x) is tuple else (x, 0) |
|
|
|
id_l, id_g = x_l, x_g |
|
|
|
x_l, x_g = self.conv1((x_l, x_g), fname=fname) |
|
x_l, x_g = self.conv2((x_l, x_g), fname=fname) |
|
|
|
x_l, x_g = id_l + x_l, id_g + x_g |
|
out = x_l, x_g |
|
if self.inline: |
|
out = torch.cat(out, dim=1) |
|
return out |
|
|
|
|
|
class ConcatTupleLayer(nn.Module): |
|
def forward(self, x): |
|
assert isinstance(x, tuple) |
|
x_l, x_g = x |
|
assert torch.is_tensor(x_l) or torch.is_tensor(x_g) |
|
if not torch.is_tensor(x_g): |
|
return x_l |
|
return torch.cat(x, dim=1) |
|
|
|
|
|
class FFCBlock(torch.nn.Module): |
|
def __init__(self, |
|
dim, |
|
kernel_size, |
|
padding, |
|
ratio_gin=0.75, |
|
ratio_gout=0.75, |
|
activation='linear', |
|
): |
|
super().__init__() |
|
if activation == 'linear': |
|
self.activation = nn.Identity |
|
else: |
|
self.activation = nn.ReLU |
|
self.padding = padding |
|
self.kernel_size = kernel_size |
|
self.ffc_block = FFCResnetBlock(dim=dim, |
|
padding_type='reflect', |
|
norm_layer=nn.SyncBatchNorm, |
|
activation_layer=self.activation, |
|
dilation=1, |
|
ratio_gin=ratio_gin, |
|
ratio_gout=ratio_gout) |
|
|
|
self.concat_layer = ConcatTupleLayer() |
|
|
|
def forward(self, gen_ft, mask, fname=None): |
|
x = gen_ft.float() |
|
|
|
x_l, x_g = x[:, :-self.ffc_block.conv1.ffc.global_in_num], x[:, -self.ffc_block.conv1.ffc.global_in_num:] |
|
id_l, id_g = x_l, x_g |
|
|
|
x_l, x_g = self.ffc_block((x_l, x_g), fname=fname) |
|
x_l, x_g = id_l + x_l, id_g + x_g |
|
x = self.concat_layer((x_l, x_g)) |
|
|
|
return x + gen_ft.float() |
|
|
|
|
|
class FFCSkipLayer(torch.nn.Module): |
|
def __init__(self, |
|
dim, |
|
kernel_size=3, |
|
ratio_gin=0.75, |
|
ratio_gout=0.75, |
|
): |
|
super().__init__() |
|
self.padding = kernel_size // 2 |
|
|
|
self.ffc_act = FFCBlock(dim=dim, kernel_size=kernel_size, activation=nn.ReLU, |
|
padding=self.padding, ratio_gin=ratio_gin, ratio_gout=ratio_gout) |
|
|
|
def forward(self, gen_ft, mask, fname=None): |
|
x = self.ffc_act(gen_ft, mask, fname=fname) |
|
return x |
|
|
|
|
|
class SynthesisBlock(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
w_dim, |
|
resolution, |
|
img_channels, |
|
is_last, |
|
architecture='skip', |
|
resample_filter=[1, 3, 3, 1], |
|
conv_clamp=None, |
|
use_fp16=False, |
|
fp16_channels_last=False, |
|
**layer_kwargs, |
|
): |
|
assert architecture in ['orig', 'skip', 'resnet'] |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.w_dim = w_dim |
|
self.resolution = resolution |
|
self.img_channels = img_channels |
|
self.is_last = is_last |
|
self.architecture = architecture |
|
self.use_fp16 = use_fp16 |
|
self.channels_last = (use_fp16 and fp16_channels_last) |
|
self.register_buffer('resample_filter', setup_filter(resample_filter)) |
|
self.num_conv = 0 |
|
self.num_torgb = 0 |
|
self.res_ffc = {4: 0, 8: 0, 16: 0, 32: 1, 64: 1, 128: 1, 256: 1, 512: 1} |
|
|
|
if in_channels != 0 and resolution >= 8: |
|
self.ffc_skip = nn.ModuleList() |
|
for _ in range(self.res_ffc[resolution]): |
|
self.ffc_skip.append(FFCSkipLayer(dim=out_channels)) |
|
|
|
if in_channels == 0: |
|
self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution])) |
|
|
|
if in_channels != 0: |
|
self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim * 3, resolution=resolution, up=2, |
|
resample_filter=resample_filter, conv_clamp=conv_clamp, |
|
channels_last=self.channels_last, **layer_kwargs) |
|
self.num_conv += 1 |
|
|
|
self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim * 3, resolution=resolution, |
|
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) |
|
self.num_conv += 1 |
|
|
|
if is_last or architecture == 'skip': |
|
self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim * 3, |
|
conv_clamp=conv_clamp, channels_last=self.channels_last) |
|
self.num_torgb += 1 |
|
|
|
if in_channels != 0 and architecture == 'resnet': |
|
self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2, |
|
resample_filter=resample_filter, channels_last=self.channels_last) |
|
|
|
def forward(self, x, mask, feats, img, ws, fname=None, force_fp32=False, fused_modconv=None, **layer_kwargs): |
|
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 |
|
dtype = torch.float32 |
|
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format |
|
if fused_modconv is None: |
|
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) |
|
|
|
x = x.to(dtype=dtype, memory_format=memory_format) |
|
x_skip = feats[self.resolution].clone().to(dtype=dtype, memory_format=memory_format) |
|
|
|
|
|
if self.in_channels == 0: |
|
x = self.conv1(x, ws[1], fused_modconv=fused_modconv, **layer_kwargs) |
|
elif self.architecture == 'resnet': |
|
y = self.skip(x, gain=np.sqrt(0.5)) |
|
x = self.conv0(x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs) |
|
if len(self.ffc_skip) > 0: |
|
mask = F.interpolate(mask, size=x_skip.shape[2:], ) |
|
z = x + x_skip |
|
for fres in self.ffc_skip: |
|
z = fres(z, mask) |
|
x = x + z |
|
else: |
|
x = x + x_skip |
|
x = self.conv1(x, ws[1].clone(), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) |
|
x = y.add_(x) |
|
else: |
|
x = self.conv0(x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs) |
|
if len(self.ffc_skip) > 0: |
|
mask = F.interpolate(mask, size=x_skip.shape[2:], ) |
|
z = x + x_skip |
|
for fres in self.ffc_skip: |
|
z = fres(z, mask) |
|
x = x + z |
|
else: |
|
x = x + x_skip |
|
x = self.conv1(x, ws[1].clone(), fused_modconv=fused_modconv, **layer_kwargs) |
|
|
|
if img is not None: |
|
img = upsample2d(img, self.resample_filter) |
|
if self.is_last or self.architecture == 'skip': |
|
y = self.torgb(x, ws[2].clone(), fused_modconv=fused_modconv) |
|
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) |
|
img = img.add_(y) if img is not None else y |
|
|
|
x = x.to(dtype=dtype) |
|
assert x.dtype == dtype |
|
assert img is None or img.dtype == torch.float32 |
|
return x, img |
|
|
|
|
|
class SynthesisNetwork(torch.nn.Module): |
|
def __init__(self, |
|
w_dim, |
|
z_dim, |
|
img_resolution, |
|
img_channels, |
|
channel_base=16384, |
|
channel_max=512, |
|
num_fp16_res=0, |
|
**block_kwargs, |
|
): |
|
assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0 |
|
super().__init__() |
|
self.w_dim = w_dim |
|
self.img_resolution = img_resolution |
|
self.img_resolution_log2 = int(np.log2(img_resolution)) |
|
self.img_channels = img_channels |
|
self.block_resolutions = [2 ** i for i in range(3, self.img_resolution_log2 + 1)] |
|
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions} |
|
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8) |
|
|
|
self.foreword = SynthesisForeword(img_channels=img_channels, in_channels=min(channel_base // 4, channel_max), |
|
z_dim=z_dim * 2, resolution=4) |
|
|
|
self.num_ws = self.img_resolution_log2 * 2 - 2 |
|
for res in self.block_resolutions: |
|
if res // 2 in channels_dict.keys(): |
|
in_channels = channels_dict[res // 2] if res > 4 else 0 |
|
else: |
|
in_channels = min(channel_base // (res // 2), channel_max) |
|
out_channels = channels_dict[res] |
|
use_fp16 = (res >= fp16_resolution) |
|
use_fp16 = False |
|
is_last = (res == self.img_resolution) |
|
block = SynthesisBlock(in_channels, out_channels, w_dim=w_dim, resolution=res, |
|
img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs) |
|
setattr(self, f'b{res}', block) |
|
|
|
def forward(self, x_global, mask, feats, ws, fname=None, **block_kwargs): |
|
|
|
img = None |
|
|
|
x, img = self.foreword(x_global, ws, feats, img) |
|
|
|
for res in self.block_resolutions: |
|
block = getattr(self, f'b{res}') |
|
mod_vector0 = [] |
|
mod_vector0.append(ws[:, int(np.log2(res)) * 2 - 5]) |
|
mod_vector0.append(x_global.clone()) |
|
mod_vector0 = torch.cat(mod_vector0, dim=1) |
|
|
|
mod_vector1 = [] |
|
mod_vector1.append(ws[:, int(np.log2(res)) * 2 - 4]) |
|
mod_vector1.append(x_global.clone()) |
|
mod_vector1 = torch.cat(mod_vector1, dim=1) |
|
|
|
mod_vector_rgb = [] |
|
mod_vector_rgb.append(ws[:, int(np.log2(res)) * 2 - 3]) |
|
mod_vector_rgb.append(x_global.clone()) |
|
mod_vector_rgb = torch.cat(mod_vector_rgb, dim=1) |
|
x, img = block(x, mask, feats, img, (mod_vector0, mod_vector1, mod_vector_rgb), fname=fname, **block_kwargs) |
|
return img |
|
|
|
|
|
class MappingNetwork(torch.nn.Module): |
|
def __init__(self, |
|
z_dim, |
|
c_dim, |
|
w_dim, |
|
num_ws, |
|
num_layers=8, |
|
embed_features=None, |
|
layer_features=None, |
|
activation='lrelu', |
|
lr_multiplier=0.01, |
|
w_avg_beta=0.995, |
|
): |
|
super().__init__() |
|
self.z_dim = z_dim |
|
self.c_dim = c_dim |
|
self.w_dim = w_dim |
|
self.num_ws = num_ws |
|
self.num_layers = num_layers |
|
self.w_avg_beta = w_avg_beta |
|
|
|
if embed_features is None: |
|
embed_features = w_dim |
|
if c_dim == 0: |
|
embed_features = 0 |
|
if layer_features is None: |
|
layer_features = w_dim |
|
features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim] |
|
|
|
if c_dim > 0: |
|
self.embed = FullyConnectedLayer(c_dim, embed_features) |
|
for idx in range(num_layers): |
|
in_features = features_list[idx] |
|
out_features = features_list[idx + 1] |
|
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier) |
|
setattr(self, f'fc{idx}', layer) |
|
|
|
if num_ws is not None and w_avg_beta is not None: |
|
self.register_buffer('w_avg', torch.zeros([w_dim])) |
|
|
|
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False): |
|
|
|
x = None |
|
with torch.autograd.profiler.record_function('input'): |
|
if self.z_dim > 0: |
|
x = normalize_2nd_moment(z.to(torch.float32)) |
|
if self.c_dim > 0: |
|
y = normalize_2nd_moment(self.embed(c.to(torch.float32))) |
|
x = torch.cat([x, y], dim=1) if x is not None else y |
|
|
|
|
|
for idx in range(self.num_layers): |
|
layer = getattr(self, f'fc{idx}') |
|
x = layer(x) |
|
|
|
|
|
if self.w_avg_beta is not None and self.training and not skip_w_avg_update: |
|
with torch.autograd.profiler.record_function('update_w_avg'): |
|
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)) |
|
|
|
|
|
if self.num_ws is not None: |
|
with torch.autograd.profiler.record_function('broadcast'): |
|
x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) |
|
|
|
|
|
if truncation_psi != 1: |
|
with torch.autograd.profiler.record_function('truncate'): |
|
assert self.w_avg_beta is not None |
|
if self.num_ws is None or truncation_cutoff is None: |
|
x = self.w_avg.lerp(x, truncation_psi) |
|
else: |
|
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi) |
|
return x |
|
|
|
|
|
class Generator(torch.nn.Module): |
|
def __init__(self, |
|
z_dim, |
|
c_dim, |
|
w_dim, |
|
img_resolution, |
|
img_channels, |
|
encoder_kwargs={}, |
|
mapping_kwargs={}, |
|
synthesis_kwargs={}, |
|
): |
|
super().__init__() |
|
self.z_dim = z_dim |
|
self.c_dim = c_dim |
|
self.w_dim = w_dim |
|
self.img_resolution = img_resolution |
|
self.img_channels = img_channels |
|
self.encoder = EncoderNetwork(c_dim=c_dim, z_dim=z_dim, img_resolution=img_resolution, |
|
img_channels=img_channels, **encoder_kwargs) |
|
self.synthesis = SynthesisNetwork(z_dim=z_dim, w_dim=w_dim, img_resolution=img_resolution, |
|
img_channels=img_channels, **synthesis_kwargs) |
|
self.num_ws = self.synthesis.num_ws |
|
self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs) |
|
|
|
def forward(self, img, c, fname=None, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs): |
|
mask = img[:, -1].unsqueeze(1) |
|
x_global, z, feats = self.encoder(img, c) |
|
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff) |
|
img = self.synthesis(x_global, mask, feats, ws, fname=fname, **synthesis_kwargs) |
|
return img |
|
|
|
|
|
FCF_MODEL_URL = os.environ.get( |
|
"FCF_MODEL_URL", |
|
"https://github.com/Sanster/models/releases/download/add_fcf/places_512_G.pth", |
|
) |
|
|
|
|
|
class FcF(InpaintModel): |
|
min_size = 512 |
|
pad_mod = 512 |
|
pad_to_square = True |
|
|
|
def init_model(self, device, **kwargs): |
|
seed = 0 |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
kwargs = {'channel_base': 1 * 32768, 'channel_max': 512, 'num_fp16_res': 4, 'conv_clamp': 256} |
|
G = Generator(z_dim=512, c_dim=0, w_dim=512, img_resolution=512, img_channels=3, |
|
synthesis_kwargs=kwargs, encoder_kwargs=kwargs, mapping_kwargs={'num_layers': 2}) |
|
self.model = load_model(G, FCF_MODEL_URL, device) |
|
self.label = torch.zeros([1, self.model.c_dim], device=device) |
|
|
|
@staticmethod |
|
def is_downloaded() -> bool: |
|
return os.path.exists(get_cache_path_by_url(FCF_MODEL_URL)) |
|
|
|
@torch.no_grad() |
|
def __call__(self, image, mask, config: Config): |
|
""" |
|
images: [H, W, C] RGB, not normalized |
|
masks: [H, W] |
|
return: BGR IMAGE |
|
""" |
|
if image.shape[0] == 512 and image.shape[1] == 512: |
|
return self._pad_forward(image, mask, config) |
|
|
|
boxes = boxes_from_mask(mask) |
|
crop_result = [] |
|
config.hd_strategy_crop_margin = 128 |
|
for box in boxes: |
|
crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config) |
|
origin_size = crop_image.shape[:2] |
|
resize_image = resize_max_size(crop_image, size_limit=512) |
|
resize_mask = resize_max_size(crop_mask, size_limit=512) |
|
inpaint_result = self._pad_forward(resize_image, resize_mask, config) |
|
|
|
|
|
inpaint_result = cv2.resize(inpaint_result, (origin_size[1], origin_size[0]), interpolation=cv2.INTER_CUBIC) |
|
|
|
original_pixel_indices = crop_mask < 127 |
|
inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][original_pixel_indices] |
|
|
|
crop_result.append((inpaint_result, crop_box)) |
|
|
|
inpaint_result = image[:, :, ::-1] |
|
for crop_image, crop_box in crop_result: |
|
x1, y1, x2, y2 = crop_box |
|
inpaint_result[y1:y2, x1:x2, :] = crop_image |
|
|
|
return inpaint_result |
|
|
|
def forward(self, image, mask, config: Config): |
|
"""Input images and output images have same size |
|
images: [H, W, C] RGB |
|
masks: [H, W] mask area == 255 |
|
return: BGR IMAGE |
|
""" |
|
|
|
image = norm_img(image) |
|
image = image * 2 - 1 |
|
mask = (mask > 120) * 255 |
|
mask = norm_img(mask) |
|
|
|
image = torch.from_numpy(image).unsqueeze(0).to(self.device) |
|
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device) |
|
|
|
erased_img = image * (1 - mask) |
|
input_image = torch.cat([0.5 - mask, erased_img], dim=1) |
|
|
|
output = self.model(input_image, self.label, truncation_psi=0.1, noise_mode='none') |
|
output = (output.permute(0, 2, 3, 1) * 127.5 + 127.5).round().clamp(0, 255).to(torch.uint8) |
|
output = output[0].cpu().numpy() |
|
cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return cur_res |
|
|