|
import os |
|
import random |
|
import time |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from loguru import logger |
|
|
|
from lama_cleaner.helper import get_cache_path_by_url, load_jit_model |
|
from lama_cleaner.model.base import InpaintModel |
|
from lama_cleaner.schema import Config |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MANGA_INPAINTOR_MODEL_URL = os.environ.get( |
|
"MANGA_INPAINTOR_MODEL_URL", |
|
"https://github.com/Sanster/models/releases/download/manga/manga_inpaintor.jit" |
|
) |
|
MANGA_LINE_MODEL_URL = os.environ.get( |
|
"MANGA_LINE_MODEL_URL", |
|
"https://github.com/Sanster/models/releases/download/manga/erika.jit" |
|
) |
|
|
|
|
|
class Manga(InpaintModel): |
|
pad_mod = 16 |
|
|
|
def init_model(self, device, **kwargs): |
|
self.inpaintor_model = load_jit_model(MANGA_INPAINTOR_MODEL_URL, device) |
|
self.line_model = load_jit_model(MANGA_LINE_MODEL_URL, device) |
|
self.seed = 42 |
|
|
|
@staticmethod |
|
def is_downloaded() -> bool: |
|
model_paths = [ |
|
get_cache_path_by_url(MANGA_INPAINTOR_MODEL_URL), |
|
get_cache_path_by_url(MANGA_LINE_MODEL_URL), |
|
] |
|
return all([os.path.exists(it) for it in model_paths]) |
|
|
|
def forward(self, image, mask, config: Config): |
|
""" |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] |
|
return: BGR IMAGE |
|
""" |
|
seed = self.seed |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
gray_img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) |
|
gray_img = torch.from_numpy(gray_img[np.newaxis, np.newaxis, :, :].astype(np.float32)).to(self.device) |
|
start = time.time() |
|
lines = self.line_model(gray_img) |
|
torch.cuda.empty_cache() |
|
lines = torch.clamp(lines, 0, 255) |
|
logger.info(f"erika_model time: {time.time() - start}") |
|
|
|
mask = torch.from_numpy(mask[np.newaxis, :, :, :]).to(self.device) |
|
mask = mask.permute(0, 3, 1, 2) |
|
mask = torch.where(mask > 0.5, 1.0, 0.0) |
|
noise = torch.randn_like(mask) |
|
ones = torch.ones_like(mask) |
|
|
|
gray_img = gray_img / 255 * 2 - 1.0 |
|
lines = lines / 255 * 2 - 1.0 |
|
|
|
start = time.time() |
|
inpainted_image = self.inpaintor_model(gray_img, lines, mask, noise, ones) |
|
logger.info(f"image_inpaintor_model time: {time.time() - start}") |
|
|
|
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy() |
|
cur_res = (cur_res * 127.5 + 127.5).astype(np.uint8) |
|
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_GRAY2BGR) |
|
return cur_res |
|
|