|
import random |
|
|
|
import PIL |
|
import PIL.Image |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
from loguru import logger |
|
|
|
from lama_cleaner.helper import resize_max_size |
|
from lama_cleaner.model.base import InpaintModel |
|
from lama_cleaner.schema import Config |
|
|
|
|
|
class PaintByExample(InpaintModel): |
|
pad_mod = 8 |
|
min_size = 512 |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
fp16 = not kwargs.get('no_half', False) |
|
use_gpu = device == torch.device('cuda') and torch.cuda.is_available() |
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 |
|
model_kwargs = {"local_files_only": kwargs.get('local_files_only', False)} |
|
|
|
if kwargs['disable_nsfw'] or kwargs.get('cpu_offload', False): |
|
logger.info("Disable Paint By Example Model NSFW checker") |
|
model_kwargs.update(dict( |
|
safety_checker=None, |
|
requires_safety_checker=False |
|
)) |
|
|
|
self.model = DiffusionPipeline.from_pretrained( |
|
"Fantasy-Studio/Paint-by-Example", |
|
torch_dtype=torch_dtype, |
|
**model_kwargs |
|
) |
|
|
|
self.model.enable_attention_slicing() |
|
if kwargs.get('enable_xformers', False): |
|
self.model.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
if kwargs.get('cpu_offload', False) and use_gpu: |
|
self.model.image_encoder = self.model.image_encoder.to(device) |
|
self.model.enable_sequential_cpu_offload(gpu_id=0) |
|
else: |
|
self.model = self.model.to(device) |
|
|
|
def forward(self, image, mask, config: Config): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
""" |
|
seed = config.paint_by_example_seed |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
output = self.model( |
|
image=PIL.Image.fromarray(image), |
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), |
|
example_image=config.paint_by_example_example_image, |
|
num_inference_steps=config.paint_by_example_steps, |
|
output_type='np.array', |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|
|
def _scaled_pad_forward(self, image, mask, config: Config): |
|
longer_side_length = int(config.sd_scale * max(image.shape[:2])) |
|
origin_size = image.shape[:2] |
|
downsize_image = resize_max_size(image, size_limit=longer_side_length) |
|
downsize_mask = resize_max_size(mask, size_limit=longer_side_length) |
|
logger.info( |
|
f"Resize image to do paint_by_example: {image.shape} -> {downsize_image.shape}" |
|
) |
|
inpaint_result = self._pad_forward(downsize_image, downsize_mask, config) |
|
|
|
inpaint_result = cv2.resize( |
|
inpaint_result, |
|
(origin_size[1], origin_size[0]), |
|
interpolation=cv2.INTER_CUBIC, |
|
) |
|
original_pixel_indices = mask < 127 |
|
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices] |
|
return inpaint_result |
|
|
|
@torch.no_grad() |
|
def __call__(self, image, mask, config: Config): |
|
""" |
|
images: [H, W, C] RGB, not normalized |
|
masks: [H, W] |
|
return: BGR IMAGE |
|
""" |
|
if config.use_croper: |
|
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config) |
|
crop_image = self._scaled_pad_forward(crop_img, crop_mask, config) |
|
inpaint_result = image[:, :, ::-1] |
|
inpaint_result[t:b, l:r, :] = crop_image |
|
else: |
|
inpaint_result = self._scaled_pad_forward(image, mask, config) |
|
|
|
return inpaint_result |
|
|
|
def forward_post_process(self, result, image, mask, config): |
|
if config.paint_by_example_match_histograms: |
|
result = self._match_histograms(result, image[:, :, ::-1], mask) |
|
|
|
if config.paint_by_example_mask_blur != 0: |
|
k = 2 * config.paint_by_example_mask_blur + 1 |
|
mask = cv2.GaussianBlur(mask, (k, k), 0) |
|
return result, image, mask |
|
|
|
@staticmethod |
|
def is_downloaded() -> bool: |
|
|
|
return True |
|
|