#!/usr/bin/env python3 import imghdr import io import json import logging import multiprocessing import os import random import time from pathlib import Path from typing import Union import cv2 import numpy as np import torch from PIL import Image from loguru import logger from watchdog.events import FileSystemEventHandler from lama_cleaner.file_manager import FileManager from lama_cleaner.interactive_seg import InteractiveSeg, Click from lama_cleaner.model_manager import ModelManager from lama_cleaner.schema import Config try: torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(False) except: pass from flask import Flask, request, send_file, cli, make_response, send_from_directory, jsonify # Disable ability for Flask to display warning about using a development server in a production environment. # https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356 cli.show_server_banner = lambda *_: None from flask_cors import CORS from lama_cleaner.helper import ( load_img, numpy_to_bytes, resize_max_size, ) NUM_THREADS = str(multiprocessing.cpu_count()) # fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56 os.environ["KMP_DUPLICATE_LIB_OK"] = "True" os.environ["OMP_NUM_THREADS"] = NUM_THREADS os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS os.environ["MKL_NUM_THREADS"] = NUM_THREADS os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS if os.environ.get("CACHE_DIR"): os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"] BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build") class NoFlaskwebgui(logging.Filter): def filter(self, record): return "flaskwebgui-keep-server-alive" not in record.getMessage() logging.getLogger("werkzeug").addFilter(NoFlaskwebgui()) app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static")) app.config["JSON_AS_ASCII"] = False CORS(app, expose_headers=["Content-Disposition"]) model: ModelManager = None thumb: FileManager = None interactive_seg_model: InteractiveSeg = None device = None input_image_path: str = None is_disable_model_switch: bool = False is_enable_file_manager: bool = False is_desktop: bool = False def get_image_ext(img_bytes): w = imghdr.what("", img_bytes) if w is None: w = "jpeg" return w def diffuser_callback(i, t, latents): pass # socketio.emit('diffusion_step', {'diffusion_step': step}) @app.route("/save_image", methods=["POST"]) def save_image(): # all image in output directory input = request.files origin_image_bytes = input["image"].read() # RGB image, _ = load_img(origin_image_bytes) thumb.save_to_output_directory(image, request.form["filename"]) return 'ok', 200 @app.route("/medias/") def medias(tab): if tab == 'image': response = make_response(jsonify(thumb.media_names), 200) else: response = make_response(jsonify(thumb.output_media_names), 200) # response.last_modified = thumb.modified_time[tab] # response.cache_control.no_cache = True # response.cache_control.max_age = 0 # response.make_conditional(request) return response @app.route('/media//') def media_file(tab, filename): if tab == 'image': return send_from_directory(thumb.root_directory, filename) return send_from_directory(thumb.output_dir, filename) @app.route('/media_thumbnail//') def media_thumbnail_file(tab, filename): args = request.args width = args.get('width') height = args.get('height') if width is None and height is None: width = 256 if width: width = int(float(width)) if height: height = int(float(height)) directory = thumb.root_directory if tab == 'output': directory = thumb.output_dir thumb_filename, (width, height) = thumb.get_thumbnail(directory, filename, width, height) thumb_filepath = f"{app.config['THUMBNAIL_MEDIA_THUMBNAIL_ROOT']}{thumb_filename}" response = make_response(send_file(thumb_filepath)) response.headers["X-Width"] = str(width) response.headers["X-Height"] = str(height) return response @app.route("/inpaint", methods=["POST"]) def process(): print("-------------") print(request) logger.info(f"Resized Resized Resized: { request.form}") input = request.files # RGB origin_image_bytes = input["image"].read() image, alpha_channel = load_img(origin_image_bytes) mask, _ = load_img(input["mask"].read(), gray=True) mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1] if image.shape[:2] != mask.shape[:2]: return f"Mask shape{mask.shape[:2]} not queal to Image shape{image.shape[:2]}", 400 original_shape = image.shape interpolation = cv2.INTER_CUBIC form = request.form size_limit: Union[int, str] = form.get("sizeLimit", "1080") logger.info(size_limit) if size_limit == "Original": size_limit = max(image.shape) else: size_limit = int(size_limit) if "paintByExampleImage" in input: paint_by_example_example_image, _ = load_img(input["paintByExampleImage"].read()) paint_by_example_example_image = Image.fromarray(paint_by_example_example_image) else: paint_by_example_example_image = None config = Config( ldm_steps=form["ldmSteps"], ldm_sampler=form["ldmSampler"], hd_strategy=form["hdStrategy"], zits_wireframe=form["zitsWireframe"], hd_strategy_crop_margin=form["hdStrategyCropMargin"], hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"], hd_strategy_resize_limit=form["hdStrategyResizeLimit"], prompt=form["prompt"], negative_prompt=form["negativePrompt"], use_croper=form["useCroper"], croper_x=form["croperX"], croper_y=form["croperY"], croper_height=form["croperHeight"], croper_width=form["croperWidth"], sd_scale=form["sdScale"], sd_mask_blur=form["sdMaskBlur"], sd_strength=form["sdStrength"], sd_steps=form["sdSteps"], sd_guidance_scale=form["sdGuidanceScale"], sd_sampler=form["sdSampler"], sd_seed=form["sdSeed"], sd_match_histograms=form["sdMatchHistograms"], cv2_flag=form["cv2Flag"], cv2_radius=form['cv2Radius'], paint_by_example_steps=form["paintByExampleSteps"], paint_by_example_guidance_scale=form["paintByExampleGuidanceScale"], paint_by_example_mask_blur=form["paintByExampleMaskBlur"], paint_by_example_seed=form["paintByExampleSeed"], paint_by_example_match_histograms=form["paintByExampleMatchHistograms"], paint_by_example_example_image=paint_by_example_example_image, ) print(form["hdStrategy"]) if config.sd_seed == -1: config.sd_seed = random.randint(1, 999999999) if config.paint_by_example_seed == -1: config.paint_by_example_seed = random.randint(1, 999999999) logger.info(f"Origin image shape: {original_shape}") image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) logger.info(f"Resized image shape: {image.shape}") mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) start = time.time() try: res_np_img = model(image, mask, config) except RuntimeError as e: torch.cuda.empty_cache() if "CUDA out of memory. " in str(e): # NOTE: the string may change? return "CUDA out of memory", 500 else: logger.exception(e) return "Internal Server Error", 500 finally: logger.info(f"process time: {(time.time() - start) * 1000}ms") torch.cuda.empty_cache() if alpha_channel is not None: if alpha_channel.shape[:2] != res_np_img.shape[:2]: alpha_channel = cv2.resize( alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0]) ) res_np_img = np.concatenate( (res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1 ) ext = get_image_ext(origin_image_bytes) response = make_response( send_file( io.BytesIO(numpy_to_bytes(res_np_img, ext)), mimetype=f"image/{ext}", ) ) response.headers["X-Seed"] = str(config.sd_seed) return response @app.route("/interactive_seg", methods=["POST"]) def interactive_seg(): input = request.files origin_image_bytes = input["image"].read() # RGB image, _ = load_img(origin_image_bytes) if 'mask' in input: mask, _ = load_img(input["mask"].read(), gray=True) else: mask = None _clicks = json.loads(request.form["clicks"]) clicks = [] for i, click in enumerate(_clicks): clicks.append(Click(coords=(click[1], click[0]), indx=i, is_positive=click[2] == 1)) start = time.time() new_mask = interactive_seg_model(image, clicks=clicks, prev_mask=mask) logger.info(f"interactive seg process time: {(time.time() - start) * 1000}ms") response = make_response( send_file( io.BytesIO(numpy_to_bytes(new_mask, 'png')), mimetype=f"image/png", ) ) return response @app.route("/model") def current_model(): return model.name, 200 @app.route("/is_disable_model_switch") def get_is_disable_model_switch(): res = 'true' if is_disable_model_switch else 'false' return res, 200 @app.route("/is_enable_file_manager") def get_is_enable_file_manager(): res = 'true' if is_enable_file_manager else 'false' return res, 200 @app.route("/model_downloaded/") def model_downloaded(name): return str(model.is_downloaded(name)), 200 @app.route("/is_desktop") def get_is_desktop(): return str(is_desktop), 200 @app.route("/model", methods=["POST"]) def switch_model(): if is_disable_model_switch: return "Switch model is disabled", 400 new_name = request.form.get("name") if new_name == model.name: return "Same model", 200 try: model.switch(new_name) except NotImplementedError: return f"{new_name} not implemented", 403 return f"ok, switch to {new_name}", 200 @app.route("/") def index(): return send_file(os.path.join(BUILD_DIR, "index.html"), cache_timeout=0) @app.route("/inputimage") def set_input_photo(): if input_image_path: with open(input_image_path, "rb") as f: image_in_bytes = f.read() return send_file( input_image_path, as_attachment=True, attachment_filename=Path(input_image_path).name, mimetype=f"image/{get_image_ext(image_in_bytes)}", ) else: return "No Input Image" class FSHandler(FileSystemEventHandler): def on_modified(self, event): print("File modified: %s" % event.src_path) def main(args): print("-----------------------------------") print(args) global model global interactive_seg_model global device global input_image_path global is_disable_model_switch global is_enable_file_manager global is_desktop global thumb device = torch.device(args.device) is_disable_model_switch = args.disable_model_switch is_desktop = args.gui if is_disable_model_switch: logger.info(f"Start with --disable-model-switch, model switch on frontend is disable") if args.input and os.path.isdir(args.input): logger.info(f"Initialize file manager") thumb = FileManager(app) is_enable_file_manager = True app.config["THUMBNAIL_MEDIA_ROOT"] = args.input app.config["THUMBNAIL_MEDIA_THUMBNAIL_ROOT"] = os.path.join(args.output_dir, 'lama_cleaner_thumbnails') thumb.output_dir = Path(args.output_dir) # thumb.start() # try: # while True: # time.sleep(1) # finally: # thumb.image_dir_observer.stop() # thumb.image_dir_observer.join() # thumb.output_dir_observer.stop() # thumb.output_dir_observer.join() else: input_image_path = args.input model = ModelManager( name=args.model, device=device, no_half=args.no_half, hf_access_token=args.hf_access_token, disable_nsfw=args.sd_disable_nsfw or args.disable_nsfw, sd_cpu_textencoder=args.sd_cpu_textencoder, sd_run_local=args.sd_run_local, local_files_only=args.local_files_only, cpu_offload=args.cpu_offload, enable_xformers=args.sd_enable_xformers or args.enable_xformers, callback=diffuser_callback, ) interactive_seg_model = InteractiveSeg() if args.gui: app_width, app_height = args.gui_size from flaskwebgui import FlaskUI ui = FlaskUI( app, width=app_width, height=app_height, host=args.host, port=args.port, close_server_on_exit=not args.no_gui_auto_close ) ui.run() else: app.run(host=args.host, port=args.port, debug=args.debug)