from pathlib import Path import cv2 import pytest import torch from lama_cleaner.model_manager import ModelManager from lama_cleaner.schema import Config, HDStrategy, LDMSampler current_dir = Path(__file__).parent.absolute().resolve() save_dir = current_dir / 'result' save_dir.mkdir(exist_ok=True, parents=True) device = 'cuda' if torch.cuda.is_available() else 'cpu' device = torch.device(device) def get_data(fx: float = 1, fy: float = 1.0, img_p=current_dir / "image.png", mask_p=current_dir / "mask.png"): img = cv2.imread(str(img_p)) img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB) mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA) mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST) return img, mask def get_config(strategy, **kwargs): data = dict( ldm_steps=1, ldm_sampler=LDMSampler.plms, hd_strategy=strategy, hd_strategy_crop_margin=32, hd_strategy_crop_trigger_size=200, hd_strategy_resize_limit=200, ) data.update(**kwargs) return Config(**data) def assert_equal(model, config, gt_name, fx: float = 1, fy: float = 1, img_p=current_dir / "image.png", mask_p=current_dir / "mask.png"): img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p) print(f"Input image shape: {img.shape}") res = model(img, mask, config) cv2.imwrite( str(save_dir / gt_name), res, [int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0], ) """ Note that JPEG is lossy compression, so even if it is the highest quality 100, when the saved images is reloaded, a difference occurs with the original pixel value. If you want to save the original images as it is, save it as PNG or BMP. """ # gt = cv2.imread(str(current_dir / gt_name), cv2.IMREAD_UNCHANGED) # assert np.array_equal(res, gt) @pytest.mark.parametrize( "strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP] ) def test_lama(strategy): model = ModelManager(name="lama", device=device) assert_equal( model, get_config(strategy), f"lama_{strategy[0].upper() + strategy[1:]}_result.png", ) fx = 1.3 assert_equal( model, get_config(strategy), f"lama_{strategy[0].upper() + strategy[1:]}_fx_{fx}_result.png", fx=1.3, ) @pytest.mark.parametrize( "strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP] ) @pytest.mark.parametrize("ldm_sampler", [LDMSampler.ddim, LDMSampler.plms]) def test_ldm(strategy, ldm_sampler): model = ModelManager(name="ldm", device=device) cfg = get_config(strategy, ldm_sampler=ldm_sampler) assert_equal( model, cfg, f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_result.png" ) fx = 1.3 assert_equal( model, cfg, f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_fx_{fx}_result.png", fx=fx, ) @pytest.mark.parametrize( "strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP] ) @pytest.mark.parametrize("zits_wireframe", [False, True]) def test_zits(strategy, zits_wireframe): model = ModelManager(name="zits", device=device) cfg = get_config(strategy, zits_wireframe=zits_wireframe) # os.environ['ZITS_DEBUG_LINE_PATH'] = str(current_dir / 'zits_debug_line.jpg') # os.environ['ZITS_DEBUG_EDGE_PATH'] = str(current_dir / 'zits_debug_edge.jpg') assert_equal( model, cfg, f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_result.png", ) fx = 1.3 assert_equal( model, cfg, f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png", fx=fx, ) @pytest.mark.parametrize( "strategy", [HDStrategy.ORIGINAL] ) def test_mat(strategy): model = ModelManager(name="mat", device=device) cfg = get_config(strategy) assert_equal( model, cfg, f"mat_{strategy.capitalize()}_result.png", ) @pytest.mark.parametrize( "strategy", [HDStrategy.ORIGINAL] ) def test_fcf(strategy): model = ModelManager(name="fcf", device=device) cfg = get_config(strategy) assert_equal( model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=2, fy=2 ) assert_equal( model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=3.8, fy=2 ) @pytest.mark.parametrize( "strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP] ) @pytest.mark.parametrize("cv2_flag", ['INPAINT_NS', 'INPAINT_TELEA']) @pytest.mark.parametrize("cv2_radius", [3, 15]) def test_cv2(strategy, cv2_flag, cv2_radius): model = ModelManager( name="cv2", device=torch.device(device), ) cfg = get_config(strategy, cv2_flag=cv2_flag, cv2_radius=cv2_radius) assert_equal( model, cfg, f"sd_{strategy.capitalize()}_{cv2_flag}_{cv2_radius}.png", img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", ) @pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]) def test_manga(strategy): model = ModelManager( name="manga", device=torch.device(device), ) cfg = get_config(strategy) assert_equal( model, cfg, f"sd_{strategy.capitalize()}.png", img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", )