Safetensors
mpt
Krutrim
language-model
custom_code
krutrim-admin commited on
Commit
70d97a8
·
verified ·
1 Parent(s): f7969cf

Updated inference script

Browse files
Files changed (1) hide show
  1. README.md +14 -22
README.md CHANGED
@@ -37,7 +37,7 @@ Krutrim Large Language Model (LLM) is a 2 trillion token multilingual foundation
37
 
38
  | Model Name | Release Date |Release Note | Reference|
39
  |------------|-------------|-------------|-------------|
40
- | Krutrim-1-Instruct | 2024-01-31 | SFT on Krutrim-1-Base |[Here](https://huggingface.co/krutrim-ai-labs/Krutrim-1-instruct)
41
 
42
 
43
  ## Data Freshness
@@ -110,42 +110,34 @@ Krutrim Large Language Model (LLM) is a 2 trillion token multilingual foundation
110
 
111
  ## Usage
112
 
113
- To run this model, do this:
114
- ```
115
- git clone https://github.com/ola-krutrim/Krutrim-1-7B.git
116
- cd Krutrim-1-7B
117
- pip install -r requirements.txt
118
- ```
119
-
120
- To test the base model, you can run
121
- ```
122
- python inference/inference.py
123
- ```
124
-
125
- To test batch inference of instruct model, you can run
126
- ```
127
- python inference/batch_inference.py
128
- ```
129
-
130
  To use the instruct model, you can load it with `AutoModelForCausalLM` as follows:
131
  ```
132
  import torch
133
  from transformers import AutoModelForCausalLM, AutoTokenizer
134
 
135
- model_id = "krutrim-ai-labs/Krutrim-1-base"
136
  # Load model and tokenizer
137
  model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, trust_remote_code=True)
138
  tokenizer = AutoTokenizer.from_pretrained(model_id)
139
 
140
- prompt = "Hello"
 
 
 
 
 
 
 
 
141
 
142
- inputs = tokenizer(prompt, return_tensors='pt')
 
143
  inputs.pop("token_type_ids", None)
144
 
145
  # Generate response
146
  outputs = model.generate(
147
  **inputs,
148
- max_length=5
149
  )
150
 
151
  response = tokenizer.decode(outputs[0])
 
37
 
38
  | Model Name | Release Date |Release Note | Reference|
39
  |------------|-------------|-------------|-------------|
40
+ | Krutrim-1-Instruct | 2024-01-31 | SFT on Krutrim-1 Base |[Here](https://huggingface.co/krutrim-ai-labs/Krutrim-1-instruct)
41
 
42
 
43
  ## Data Freshness
 
110
 
111
  ## Usage
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  To use the instruct model, you can load it with `AutoModelForCausalLM` as follows:
114
  ```
115
  import torch
116
  from transformers import AutoModelForCausalLM, AutoTokenizer
117
 
118
+ model_id = "krutrim-ai-labs/Krutrim-1-instruct"
119
  # Load model and tokenizer
120
  model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, trust_remote_code=True)
121
  tokenizer = AutoTokenizer.from_pretrained(model_id)
122
 
123
+ # Apply Chat Template
124
+ chat_template ="{% for message in messages %}{% if message['role'] == 'system' %}{{ '<|SYSTEM|> ' + message['content'] + '\n' }}{% elif message['role'] == 'user' %}{{ '<|USER|> ' + message['content'] + '\n' }}{% elif message['role'] == 'assistant' %}{% if not loop.last %}{{ '<|RESPONSE|>\n' + message['content'] + eos_token + '\n' }}{% else %}{{ '<|RESPONSE|>\n' + message['content'] + eos_token }}{% endif %}{% endif %}{% if loop.last and add_generation_prompt %}{{ '<|RESPONSE|>\n' }}{% endif %}{% endfor %}"
125
+ tokenizer.chat_template = chat_template
126
+
127
+ prompt_dict = [
128
+
129
+ {"role": "system", "content": "You are an AI assistant."},
130
+ {"role": "user", "content": "Who are you?"}
131
+ ]
132
 
133
+ prompts = tokenizer.apply_chat_template(prompt_dict, add_generation_prompt=True, tokenize=False)
134
+ inputs = tokenizer(prompts, return_tensors='pt').to(device)
135
  inputs.pop("token_type_ids", None)
136
 
137
  # Generate response
138
  outputs = model.generate(
139
  **inputs,
140
+ max_length=100
141
  )
142
 
143
  response = tokenizer.decode(outputs[0])