File size: 8,165 Bytes
b63318a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "a3d6ff53-2176-44aa-8590-ec0aa301342d",
"metadata": {},
"outputs": [],
"source": [
"from vllm import LLM, SamplingParams\n",
"import pandas as pd\n",
"import numpy as np\n",
"import torch.nn.functional as F\n",
"import torch\n",
"from transformers import AutoTokenizer\n",
"from transformers import AutoModelForCausalLM\n",
"import re\n",
"import os\n",
"#os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"1\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8a070d00-9a45-4360-a38f-ceed8a9360e1",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "0f407048-0eb3-439a-8257-3cb6881ac784",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"synthetic_histories = pd.read_csv('synthetic_histories_11-22-24.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9bc40636-2325-4664-afc3-833b58fe7ba0",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"synthetic_histories.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a9b4cae4-d46d-4a80-841c-8c8f08915b90",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "ca2b0678-119e-47a7-9a72-28685e97559d",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"llama = LLM(model='hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4', tensor_parallel_size = 2, download_dir = \"../../\", gpu_memory_utilization=0.90, max_model_len=120000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f19be1ca-334c-4285-b8b7-0c9fbc83d0d4",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "02b9f891-4b50-4b64-9954-8481056cba79",
"metadata": {},
"outputs": [],
"source": [
"def summarize_patients(patient_texts, llama_model):\n",
" \n",
"\n",
" prompts = []\n",
"\n",
" tokenizer = llama_model.get_tokenizer()\n",
"\n",
" prompts = []\n",
" for the_patient in patient_texts:\n",
"\n",
"\n",
" \n",
" messages = [{'role':'system', 'content': \"\"\"You are an experienced clinical oncology history summarization bot.\n",
" Your job is to construct a summary of the cancer history for a patient based on an excerpt of the patient's electronic health record. The text in the excerpt is provided in chronological order. \n",
" Document the cancer type/primary site (eg breast cancer, lung cancer, etc); histology (eg adenocarcinoma, squamous carcinoma, etc); current extent (localized, advanced, metastatic, etc); biomarkers (genomic results, protein expression, etc); and treatment history (surgery, radiation, chemotherapy/targeted therapy/immunotherapy, etc, including start and stop dates and best response if known).\n",
" Do not consider localized basal cell or squamous carcinomas of the skin, or colon polyps, to be cancers for your purposes.\n",
" Do not include the patient's name, but do include relevant dates whenever documented, including dates of diagnosis and start/stop dates of each treatment.\n",
" If a patient has a history of more than one cancer, document the cancers one at a time.\n",
" \"\"\"}, \n",
" {'role':'user', 'content': \"The excerpt is:\\n\" + the_patient + \"\"\"Now, write your summary. Do not add preceding text before the abstraction, and do not add notes or commentary afterwards. This will not be used for clinical care, so do not write any disclaimers or cautionary notes.\"\"\"}\n",
"\n",
" ]\n",
" \n",
"\n",
"\n",
" prompts.append(messages)\n",
"\n",
" long_messages = [x[1]['content'] for x in prompts]\n",
" trunc_messages = tokenizer.batch_decode([x[-115000:] for x in tokenizer(long_messages, add_special_tokens=False).input_ids])\n",
"\n",
" newprompts = []\n",
" for i, messages in enumerate(prompts):\n",
" messages[1]['content'] = trunc_messages[i]\n",
" template_prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)\n",
" newprompts.append(template_prompt)\n",
" \n",
"\n",
" \n",
" responses = llama_model.generate(\n",
" newprompts, \n",
" SamplingParams(\n",
" temperature=0.0,\n",
" top_p=0.2,\n",
" max_tokens=4096,\n",
" repetition_penalty=1.2,\n",
" stop_token_ids=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(\"<|eot_id|>\")], # KEYPOINT HERE\n",
" ))\n",
"\n",
" response_texts = [x.outputs[0].text for x in responses]\n",
"\n",
"\n",
" return responses, response_texts\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69bc8576-e6d7-452f-b6b0-15df7f4c8922",
"metadata": {},
"outputs": [],
"source": [
"synthetic_histories.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bd443d34-c5db-414e-9892-eec368ef7ad6",
"metadata": {},
"outputs": [],
"source": [
"# example summary generation for one synthetic patient\n",
"patient_summaries = summarize_patients(synthetic_histories.patient_long_text.iloc[10025:10026].tolist(), llama)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6b5f0b1a-6df4-4d32-9072-efb4136df070",
"metadata": {},
"outputs": [],
"source": [
"patient_summaries[1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dabd98af-947e-40c0-aea8-7805bb5b1c3c",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "74b2a972-9271-4ed2-9c2c-5ec5793e8650",
"metadata": {},
"outputs": [],
"source": [
"patient_summaries = summarize_patients(synthetic_histories.patient_long_text.tolist(), llama)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e6b772c9-c4dd-45c2-8a4a-9e5c17d25e2c",
"metadata": {},
"outputs": [],
"source": [
"output = synthetic_histories.copy()\n",
"output['patient_summary'] = patient_summaries[1]\n",
"output.to_parquet('synthetic_pt_summaries_11-22-24.parquet')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d30bf018-e135-40be-b636-0ba17acf8e61",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f9ed498-4927-46a1-a23e-bf9f3a0cc544",
"metadata": {},
"outputs": [],
"source": [
"output = pd.read_parquet('synthetic_pt_summaries_11-22-24.parquet')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a6e1e9ce-e984-458b-881c-a99e3336e6c6",
"metadata": {},
"outputs": [],
"source": [
"output.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5baf640d-1a6d-447e-84c2-d09a2a94a65a",
"metadata": {},
"outputs": [],
"source": [
"output.patient_summary.sample(n=1).iloc[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "633ab065-8620-4519-af61-d9e76849cbdf",
"metadata": {},
"outputs": [],
"source": [
"output['patient_summary'].str.contains(\"Lung\").value_counts()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|