File size: 3,910 Bytes
e19b26a
 
74652c7
 
 
 
 
e19b26a
 
74652c7
e19b26a
74652c7
e19b26a
 
 
 
 
74652c7
 
 
 
 
 
e19b26a
74652c7
 
 
e19b26a
 
 
 
 
74652c7
 
 
 
 
 
e19b26a
74652c7
e19b26a
74652c7
 
 
 
 
 
e19b26a
 
 
74652c7
 
 
 
 
 
e19b26a
 
 
74652c7
 
 
 
 
e19b26a
 
 
74652c7
 
 
 
 
e19b26a
 
 
 
74652c7
 
 
e19b26a
 
 
74652c7
 
 
 
 
e19b26a
 
74652c7
 
 
 
 
 
 
 
 
e19b26a
 
 
74652c7
 
 
 
e19b26a
74652c7
e19b26a
 
74652c7
 
 
 
e19b26a
 
74652c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
library_name: transformers
tags:
- climate-change
- flan-t5
- qlora
- instruction-tuning
---

# Model Card for FLAN-T5 Climate Action QLoRA

This is a QLoRA-finetuned version of FLAN-T5 specifically trained for climate action content analysis and generation. The model is optimized for processing and analyzing text related to climate change, sustainability, and environmental policies.

## Model Details

### Model Description

- **Developed by:** Kshitiz Khanal
- **Shared by:** kshitizkhanal7
- **Model type:** Instruction-tuned Language Model with QLoRA fine-tuning
- **Language(s):** English
- **License:** Apache 2.0
- **Finetuned from model:** google/flan-t5-base

### Model Sources
- **Repository:** https://huggingface.co/kshitizkhanal7/flan-t5-climate-qlora
- **Training Data:** FineWeb dataset (climate action filtered)

## Uses

### Direct Use

The model is designed for:
- Analyzing climate policies and initiatives
- Summarizing climate action documents
- Answering questions about climate change and environmental policies
- Evaluating sustainability measures
- Processing climate-related research and reports

### Downstream Use

The model can be integrated into:
- Climate policy analysis tools
- Environmental reporting systems
- Sustainability assessment frameworks
- Climate research applications
- Educational tools about climate change

### Out-of-Scope Use

The model should not be used for:
- Critical policy decisions without human oversight
- Generation of climate misinformation
- Technical climate science research without expert validation
- Commercial deployment without proper testing
- Medical or legal advice

## Bias, Risks, and Limitations

- Limited to climate-related content analysis
- May not perform well on general domain tasks
- Potential biases from web-based training data
- Should not be the sole source for critical decisions
- Performance varies on technical climate science topics

### Recommendations

- Always verify model outputs with authoritative sources
- Use human expert oversight for critical applications
- Consider the model as a supplementary tool, not a replacement for expert knowledge
- Regular evaluation of outputs for potential biases
- Use in conjunction with other data sources for comprehensive analysis

## Training Details

### Training Data
- Source: FineWeb dataset filtered for climate content
- Selection criteria: Climate-related keywords and quality metrics
- Processing: Instruction-style formatting with climate focus

### Training Procedure

#### Preprocessing
- Text cleaning and normalization
- Instruction templates for climate context
- Maximum input length: 512 tokens
- Maximum output length: 128 tokens

#### Training Hyperparameters
- Training regime: QLoRA 4-bit fine-tuning
- Epochs: 3
- Learning rate: 2e-4
- Batch size: 4
- Gradient accumulation steps: 4
- LoRA rank: 16
- LoRA alpha: 32
- Target modules: Query and Value matrices
- LoRA dropout: 0.05

## Environmental Impact

- **Hardware Type:** Single GPU
- **Hours used:** ~4 hours
- **Cloud Provider:** Local
- **Carbon Emitted:** Minimal due to QLoRA efficiency

## Technical Specifications

### Model Architecture and Objective
- Base architecture: FLAN-T5
- Objective: Climate-specific text analysis
- QLoRA adaptation for efficient fine-tuning
- 4-bit quantization for reduced memory usage

### Compute Infrastructure
- Python 3.8+
- PyTorch
- Transformers library
- bitsandbytes for quantization
- PEFT for LoRA implementation

### Hardware
Minimum requirements:
- 16GB GPU memory for inference
- 24GB GPU memory recommended for training
- CPU inference possible but slower

## Citation

If you use this model, please cite:
```bibtex
@misc{khanal2024climate,
  title={FLAN-T5 Climate Action QLoRA},
  author={Khanal, Kshitiz},
  year={2024},
  publisher={HuggingFace},
  howpublished={\url{https://huggingface.co/kshitizkhanal7/flan-t5-climate-qlora}}
}