File size: 1,861 Bytes
aa27419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad_v2_yash
model-index:
- name: distilbert-base-cased-distilled-squad-finetuned-squad
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-cased-distilled-squad-finetuned-squad

This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on the squad_v2_yash dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0088

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 198  | 0.5409          |
| No log        | 2.0   | 396  | 0.3048          |
| 0.9541        | 3.0   | 594  | 0.1764          |
| 0.9541        | 4.0   | 792  | 0.1117          |
| 0.9541        | 5.0   | 990  | 0.0634          |
| 0.3052        | 6.0   | 1188 | 0.0345          |
| 0.3052        | 7.0   | 1386 | 0.0229          |
| 0.1129        | 8.0   | 1584 | 0.0152          |
| 0.1129        | 9.0   | 1782 | 0.0101          |
| 0.1129        | 10.0  | 1980 | 0.0088          |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1