Commit
·
5c13518
1
Parent(s):
da8e26e
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.61 +/- 0.73
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b27d77446f236710eb8223024c3d9d8e90a817f4e4e50c6439767c1d562162e
|
3 |
+
size 107810
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe5618a31f0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fe56189d930>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1683050863106052994,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIYfUPntbRjwXZwk/IYfUPntbRjwXZwk/IYfUPntbRjwXZwk/IYfUPntbRjwXZwk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuc0mvl+JCr+tjOa+aczrvrnfvL9GtoA+M58nv+C/xj7OWN4+N0M5Plr9Rj9QdpE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAhh9Q+e1tGPBdnCT/Wh/S7cHz8umX7+7shh9Q+e1tGPBdnCT/Wh/S7cHz8umX7+7shh9Q+e1tGPBdnCT/Wh/S7cHz8umX7+7shh9Q+e1tGPBdnCT/Wh/S7cHz8umX7+7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.41509345 0.01210677 0.5367293 ]\n [0.41509345 0.01210677 0.5367293 ]\n [0.41509345 0.01210677 0.5367293 ]\n [0.41509345 0.01210677 0.5367293 ]]",
|
38 |
+
"desired_goal": "[[-0.16289414 -0.5411586 -0.45029202]\n [-0.4605439 -1.4755775 0.25139064]\n [-0.65477294 0.38818264 0.43427128]\n [ 0.18092047 0.77730334 0.28410578]]",
|
39 |
+
"observation": "[[ 0.41509345 0.01210677 0.5367293 -0.00746248 -0.00192632 -0.00768988]\n [ 0.41509345 0.01210677 0.5367293 -0.00746248 -0.00192632 -0.00768988]\n [ 0.41509345 0.01210677 0.5367293 -0.00746248 -0.00192632 -0.00768988]\n [ 0.41509345 0.01210677 0.5367293 -0.00746248 -0.00192632 -0.00768988]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA20ayva7zkr0xTVk9tArcvfiGtL1+bv07QMNRPTdBmr1/ytg8aAfwvS4x8z08yJQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.08704921 -0.07175384 0.05305213]\n [-0.10744229 -0.08814806 0.00773412]\n [ 0.0512116 -0.0753197 0.02646375]\n [-0.11720163 0.11874615 0.07264754]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF4BG6dLfD8CUhpRSlIwBbJRLMowBdJRHQLoKaiyprDZ1fZQoaAZoCWgPQwjSqpZ0lIP8v5SGlFKUaBVLMmgWR0C6CkHkLhJidX2UKGgGaAloD0MIgAuyZfn6BsCUhpRSlGgVSzJoFkdAugoXpxFRYXV9lChoBmgJaA9DCEku/yH99vu/lIaUUpRoFUsyaBZHQLoJ7lLeyiV1fZQoaAZoCWgPQwjikXh5Olfsv5SGlFKUaBVLMmgWR0C6CymVZ9uxdX2UKGgGaAloD0MIQmDl0CIrFMCUhpRSlGgVSzJoFkdAugsBOGj9GnV9lChoBmgJaA9DCBGN7iB2ZgjAlIaUUpRoFUsyaBZHQLoK1v4dp7F1fZQoaAZoCWgPQwjx8QnZeRv0v5SGlFKUaBVLMmgWR0C6Cq2bCrLhdX2UKGgGaAloD0MI+yKhLedS97+UhpRSlGgVSzJoFkdAugvmBClabHV9lChoBmgJaA9DCGOa6V4nVQXAlIaUUpRoFUsyaBZHQLoLvbm2b5N1fZQoaAZoCWgPQwi/gjRj0VQPwJSGlFKUaBVLMmgWR0C6C5OFcpsodX2UKGgGaAloD0MInbmHhO/dC8CUhpRSlGgVSzJoFkdAugtqIi1RcnV9lChoBmgJaA9DCGebG9MTxhLAlIaUUpRoFUsyaBZHQLoMr+uvECN1fZQoaAZoCWgPQwhmaafmcsMBwJSGlFKUaBVLMmgWR0C6DIefI0ZWdX2UKGgGaAloD0MI7Q4pBki067+UhpRSlGgVSzJoFkdAugxdWaMJhXV9lChoBmgJaA9DCHJvfsNEAw3AlIaUUpRoFUsyaBZHQLoMNAJb+tN1fZQoaAZoCWgPQwgyAb9GkgACwJSGlFKUaBVLMmgWR0C6DWzcAR02dX2UKGgGaAloD0MIrWnecYoO57+UhpRSlGgVSzJoFkdAug1El3QlbHV9lChoBmgJaA9DCHGTUWUYt/m/lIaUUpRoFUsyaBZHQLoNGl8w5/91fZQoaAZoCWgPQwhMM93rpD4CwJSGlFKUaBVLMmgWR0C6DPEmhM8HdX2UKGgGaAloD0MIrweT4uMTC8CUhpRSlGgVSzJoFkdAug4+g+Qlr3V9lChoBmgJaA9DCG5oyk4/aADAlIaUUpRoFUsyaBZHQLoOFkC3gDR1fZQoaAZoCWgPQwiYLy/APloOwJSGlFKUaBVLMmgWR0C6DewNXo1UdX2UKGgGaAloD0MIJxWNtb+z+b+UhpRSlGgVSzJoFkdAug3CsT37DXV9lChoBmgJaA9DCP6Y1qaxvfC/lIaUUpRoFUsyaBZHQLoO+IKMNtt1fZQoaAZoCWgPQwjZW8r5Ym/+v5SGlFKUaBVLMmgWR0C6DtA3DNyHdX2UKGgGaAloD0MIBp0QOuhSC8CUhpRSlGgVSzJoFkdAug6mCK77K3V9lChoBmgJaA9DCEUsYthhDPm/lIaUUpRoFUsyaBZHQLoOfK2KEWZ1fZQoaAZoCWgPQwiGAUuuYvEAwJSGlFKUaBVLMmgWR0C6D83hn8KpdX2UKGgGaAloD0MIacai6ewEB8CUhpRSlGgVSzJoFkdAug+ll5GBnXV9lChoBmgJaA9DCNPcCmE1Fuq/lIaUUpRoFUsyaBZHQLoPe274BWB1fZQoaAZoCWgPQwgmAP+UKhH7v5SGlFKUaBVLMmgWR0C6D1IWcjJNdX2UKGgGaAloD0MIdHrejQVFAMCUhpRSlGgVSzJoFkdAuhCOXOW0JHV9lChoBmgJaA9DCN0KYTWWsAzAlIaUUpRoFUsyaBZHQLoQZjpcHGF1fZQoaAZoCWgPQwjKbmb0o2H3v5SGlFKUaBVLMmgWR0C6EDwOFxn4dX2UKGgGaAloD0MIgPEMGvqn4r+UhpRSlGgVSzJoFkdAuhAStbLU1HV9lChoBmgJaA9DCNxnlZnSeu6/lIaUUpRoFUsyaBZHQLoRaiXY1511fZQoaAZoCWgPQwgYlGk0uVgGwJSGlFKUaBVLMmgWR0C6EUHwLE1mdX2UKGgGaAloD0MI3iHFAImm7b+UhpRSlGgVSzJoFkdAuhEX+AEt/XV9lChoBmgJaA9DCIZ1492REQHAlIaUUpRoFUsyaBZHQLoQ7pzLfUF1fZQoaAZoCWgPQwiAYI4evxcEwJSGlFKUaBVLMmgWR0C6EjCEYfnwdX2UKGgGaAloD0MIb7ckB+yqBMCUhpRSlGgVSzJoFkdAuhIIMvysjnV9lChoBmgJaA9DCHbhB+dTx/m/lIaUUpRoFUsyaBZHQLoR3hFmWdF1fZQoaAZoCWgPQwi0ci8wK3QKwJSGlFKUaBVLMmgWR0C6EbS31BdEdX2UKGgGaAloD0MITl/P1ywX/r+UhpRSlGgVSzJoFkdAuhMC06YE4nV9lChoBmgJaA9DCMWu7e2WhALAlIaUUpRoFUsyaBZHQLoS2o7FKkF1fZQoaAZoCWgPQwiuLNFZZtEDwJSGlFKUaBVLMmgWR0C6ErBJ/XoUdX2UKGgGaAloD0MIkIR9O4mI/L+UhpRSlGgVSzJoFkdAuhKG/etSynV9lChoBmgJaA9DCLafjPFhtv+/lIaUUpRoFUsyaBZHQLoT8XFLnLd1fZQoaAZoCWgPQwhwtU5cjmcRwJSGlFKUaBVLMmgWR0C6E8maQV9GdX2UKGgGaAloD0MItW/urx7XBsCUhpRSlGgVSzJoFkdAuhOf2TPjXHV9lChoBmgJaA9DCEUtza0QlgrAlIaUUpRoFUsyaBZHQLoTdyMDOkd1fZQoaAZoCWgPQwh0m3CvzJv2v5SGlFKUaBVLMmgWR0C6FNmMXJo1dX2UKGgGaAloD0MI2bJ8XYY/97+UhpRSlGgVSzJoFkdAuhSxRKpT/HV9lChoBmgJaA9DCDDzHfzEIQbAlIaUUpRoFUsyaBZHQLoUhyBClad1fZQoaAZoCWgPQwgQBwlRvqDtv5SGlFKUaBVLMmgWR0C6FF3M2WIHdX2UKGgGaAloD0MIhA66hENfEcCUhpRSlGgVSzJoFkdAuhWt9hJAdHV9lChoBmgJaA9DCJRnXg67jwvAlIaUUpRoFUsyaBZHQLoVhgOz6ad1fZQoaAZoCWgPQwhxyAbSxWYEwJSGlFKUaBVLMmgWR0C6FVvwEyLydX2UKGgGaAloD0MI7ZxmgXYnCsCUhpRSlGgVSzJoFkdAuhUypPykK3V9lChoBmgJaA9DCEAv3LkwUgnAlIaUUpRoFUsyaBZHQLoWk0Xxe9l1fZQoaAZoCWgPQwhmZ9E7FTAKwJSGlFKUaBVLMmgWR0C6Fmr7wazedX2UKGgGaAloD0MIxAq3fCRl87+UhpRSlGgVSzJoFkdAuhZAw/PgN3V9lChoBmgJaA9DCJoIG55e6fq/lIaUUpRoFUsyaBZHQLoWF2jfvWp1fZQoaAZoCWgPQwh0DTM0nkgFwJSGlFKUaBVLMmgWR0C6F2EUKzAvdX2UKGgGaAloD0MI9yAE5Euo7b+UhpRSlGgVSzJoFkdAuhc4yvcJt3V9lChoBmgJaA9DCO8eoPtyBgbAlIaUUpRoFUsyaBZHQLoXDpKBd2R1fZQoaAZoCWgPQwhi9NxCV6L8v5SGlFKUaBVLMmgWR0C6FuU6cRUWdX2UKGgGaAloD0MIl6lJ8Ib0/7+UhpRSlGgVSzJoFkdAuhhFeF+NLnV9lChoBmgJaA9DCA/xD1t6dPi/lIaUUpRoFUsyaBZHQLoYHS26TW51fZQoaAZoCWgPQwj6t8t+3SkLwJSGlFKUaBVLMmgWR0C6F/MSPEKmdX2UKGgGaAloD0MIuqEpO/1AC8CUhpRSlGgVSzJoFkdAuhfJrgwXZXV9lChoBmgJaA9DCBud81MchxLAlIaUUpRoFUsyaBZHQLoZAuwHJLd1fZQoaAZoCWgPQwgqx2Rx/xH1v5SGlFKUaBVLMmgWR0C6GNqhtcfOdX2UKGgGaAloD0MIBU8hV+q5DcCUhpRSlGgVSzJoFkdAuhiwbIcR2HV9lChoBmgJaA9DCPKWqx+bJAfAlIaUUpRoFUsyaBZHQLoYhwXIlt11fZQoaAZoCWgPQwhn8PeL2VL9v5SGlFKUaBVLMmgWR0C6GcyQgcLjdX2UKGgGaAloD0MI6xwDste79b+UhpRSlGgVSzJoFkdAuhmkS9M9KXV9lChoBmgJaA9DCKDDfHkBtg3AlIaUUpRoFUsyaBZHQLoZejRUm2N1fZQoaAZoCWgPQwjqlh3iH7b2v5SGlFKUaBVLMmgWR0C6GVE8aGYbdX2UKGgGaAloD0MImShC6na2CsCUhpRSlGgVSzJoFkdAuhqgomXw9nV9lChoBmgJaA9DCICAtWrXxAPAlIaUUpRoFUsyaBZHQLoaeFxGUfR1fZQoaAZoCWgPQwhPdjOjHw36v5SGlFKUaBVLMmgWR0C6Gk4ht+CsdX2UKGgGaAloD0MIt9Jrs7EyAcCUhpRSlGgVSzJoFkdAuhokunMt9XV9lChoBmgJaA9DCFLxf0dUCAzAlIaUUpRoFUsyaBZHQLobcs3yZrp1fZQoaAZoCWgPQwgUIApmTEH6v5SGlFKUaBVLMmgWR0C6G0qGQCCBdX2UKGgGaAloD0MIG2X9ZmK6+7+UhpRSlGgVSzJoFkdAuhsgcU/OdHV9lChoBmgJaA9DCL7bvHFSWADAlIaUUpRoFUsyaBZHQLoa91jRUm51fZQoaAZoCWgPQwhlNzP60VADwJSGlFKUaBVLMmgWR0C6HDesxO+JdX2UKGgGaAloD0MIfqzgtyEG+7+UhpRSlGgVSzJoFkdAuhwPWCmMwXV9lChoBmgJaA9DCIBjz57LFPe/lIaUUpRoFUsyaBZHQLob5StvGZN1fZQoaAZoCWgPQwiXkXpP5ZQJwJSGlFKUaBVLMmgWR0C6G7uws5GSdX2UKGgGaAloD0MInrKaridaA8CUhpRSlGgVSzJoFkdAuh0Bd6cAinV9lChoBmgJaA9DCOqwwi0fSf+/lIaUUpRoFUsyaBZHQLoc2Qgs9Sx1fZQoaAZoCWgPQwgctcL0vQb4v5SGlFKUaBVLMmgWR0C6HK7WqcVhdX2UKGgGaAloD0MIRn2SO2ziAsCUhpRSlGgVSzJoFkdAuhyFjYqXnnV9lChoBmgJaA9DCNfa+1QVGuq/lIaUUpRoFUsyaBZHQLod0aKUFB91fZQoaAZoCWgPQwjQ04BB0qf4v5SGlFKUaBVLMmgWR0C6Halfu1F6dX2UKGgGaAloD0MINuhLb3+u/L+UhpRSlGgVSzJoFkdAuh1/JlrdnHV9lChoBmgJaA9DCMjrwaT4eO2/lIaUUpRoFUsyaBZHQLodVccU/Od1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d607d555909e77ade4f0defd044a28412f4ecf4e9486c8cea7e80d7017a9e1de
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d750d7620e9d3c571e85b886420803a4d053123e1f9303c27e3bdeecea1c6c08
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu117
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe5618a31f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe56189d930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683050863106052994, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIYfUPntbRjwXZwk/IYfUPntbRjwXZwk/IYfUPntbRjwXZwk/IYfUPntbRjwXZwk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuc0mvl+JCr+tjOa+aczrvrnfvL9GtoA+M58nv+C/xj7OWN4+N0M5Plr9Rj9QdpE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAhh9Q+e1tGPBdnCT/Wh/S7cHz8umX7+7shh9Q+e1tGPBdnCT/Wh/S7cHz8umX7+7shh9Q+e1tGPBdnCT/Wh/S7cHz8umX7+7shh9Q+e1tGPBdnCT/Wh/S7cHz8umX7+7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41509345 0.01210677 0.5367293 ]\n [0.41509345 0.01210677 0.5367293 ]\n [0.41509345 0.01210677 0.5367293 ]\n [0.41509345 0.01210677 0.5367293 ]]", "desired_goal": "[[-0.16289414 -0.5411586 -0.45029202]\n [-0.4605439 -1.4755775 0.25139064]\n [-0.65477294 0.38818264 0.43427128]\n [ 0.18092047 0.77730334 0.28410578]]", "observation": "[[ 0.41509345 0.01210677 0.5367293 -0.00746248 -0.00192632 -0.00768988]\n [ 0.41509345 0.01210677 0.5367293 -0.00746248 -0.00192632 -0.00768988]\n [ 0.41509345 0.01210677 0.5367293 -0.00746248 -0.00192632 -0.00768988]\n [ 0.41509345 0.01210677 0.5367293 -0.00746248 -0.00192632 -0.00768988]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA20ayva7zkr0xTVk9tArcvfiGtL1+bv07QMNRPTdBmr1/ytg8aAfwvS4x8z08yJQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08704921 -0.07175384 0.05305213]\n [-0.10744229 -0.08814806 0.00773412]\n [ 0.0512116 -0.0753197 0.02646375]\n [-0.11720163 0.11874615 0.07264754]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF4BG6dLfD8CUhpRSlIwBbJRLMowBdJRHQLoKaiyprDZ1fZQoaAZoCWgPQwjSqpZ0lIP8v5SGlFKUaBVLMmgWR0C6CkHkLhJidX2UKGgGaAloD0MIgAuyZfn6BsCUhpRSlGgVSzJoFkdAugoXpxFRYXV9lChoBmgJaA9DCEku/yH99vu/lIaUUpRoFUsyaBZHQLoJ7lLeyiV1fZQoaAZoCWgPQwjikXh5Olfsv5SGlFKUaBVLMmgWR0C6CymVZ9uxdX2UKGgGaAloD0MIQmDl0CIrFMCUhpRSlGgVSzJoFkdAugsBOGj9GnV9lChoBmgJaA9DCBGN7iB2ZgjAlIaUUpRoFUsyaBZHQLoK1v4dp7F1fZQoaAZoCWgPQwjx8QnZeRv0v5SGlFKUaBVLMmgWR0C6Cq2bCrLhdX2UKGgGaAloD0MI+yKhLedS97+UhpRSlGgVSzJoFkdAugvmBClabHV9lChoBmgJaA9DCGOa6V4nVQXAlIaUUpRoFUsyaBZHQLoLvbm2b5N1fZQoaAZoCWgPQwi/gjRj0VQPwJSGlFKUaBVLMmgWR0C6C5OFcpsodX2UKGgGaAloD0MInbmHhO/dC8CUhpRSlGgVSzJoFkdAugtqIi1RcnV9lChoBmgJaA9DCGebG9MTxhLAlIaUUpRoFUsyaBZHQLoMr+uvECN1fZQoaAZoCWgPQwhmaafmcsMBwJSGlFKUaBVLMmgWR0C6DIefI0ZWdX2UKGgGaAloD0MI7Q4pBki067+UhpRSlGgVSzJoFkdAugxdWaMJhXV9lChoBmgJaA9DCHJvfsNEAw3AlIaUUpRoFUsyaBZHQLoMNAJb+tN1fZQoaAZoCWgPQwgyAb9GkgACwJSGlFKUaBVLMmgWR0C6DWzcAR02dX2UKGgGaAloD0MIrWnecYoO57+UhpRSlGgVSzJoFkdAug1El3QlbHV9lChoBmgJaA9DCHGTUWUYt/m/lIaUUpRoFUsyaBZHQLoNGl8w5/91fZQoaAZoCWgPQwhMM93rpD4CwJSGlFKUaBVLMmgWR0C6DPEmhM8HdX2UKGgGaAloD0MIrweT4uMTC8CUhpRSlGgVSzJoFkdAug4+g+Qlr3V9lChoBmgJaA9DCG5oyk4/aADAlIaUUpRoFUsyaBZHQLoOFkC3gDR1fZQoaAZoCWgPQwiYLy/APloOwJSGlFKUaBVLMmgWR0C6DewNXo1UdX2UKGgGaAloD0MIJxWNtb+z+b+UhpRSlGgVSzJoFkdAug3CsT37DXV9lChoBmgJaA9DCP6Y1qaxvfC/lIaUUpRoFUsyaBZHQLoO+IKMNtt1fZQoaAZoCWgPQwjZW8r5Ym/+v5SGlFKUaBVLMmgWR0C6DtA3DNyHdX2UKGgGaAloD0MIBp0QOuhSC8CUhpRSlGgVSzJoFkdAug6mCK77K3V9lChoBmgJaA9DCEUsYthhDPm/lIaUUpRoFUsyaBZHQLoOfK2KEWZ1fZQoaAZoCWgPQwiGAUuuYvEAwJSGlFKUaBVLMmgWR0C6D83hn8KpdX2UKGgGaAloD0MIacai6ewEB8CUhpRSlGgVSzJoFkdAug+ll5GBnXV9lChoBmgJaA9DCNPcCmE1Fuq/lIaUUpRoFUsyaBZHQLoPe274BWB1fZQoaAZoCWgPQwgmAP+UKhH7v5SGlFKUaBVLMmgWR0C6D1IWcjJNdX2UKGgGaAloD0MIdHrejQVFAMCUhpRSlGgVSzJoFkdAuhCOXOW0JHV9lChoBmgJaA9DCN0KYTWWsAzAlIaUUpRoFUsyaBZHQLoQZjpcHGF1fZQoaAZoCWgPQwjKbmb0o2H3v5SGlFKUaBVLMmgWR0C6EDwOFxn4dX2UKGgGaAloD0MIgPEMGvqn4r+UhpRSlGgVSzJoFkdAuhAStbLU1HV9lChoBmgJaA9DCNxnlZnSeu6/lIaUUpRoFUsyaBZHQLoRaiXY1511fZQoaAZoCWgPQwgYlGk0uVgGwJSGlFKUaBVLMmgWR0C6EUHwLE1mdX2UKGgGaAloD0MI3iHFAImm7b+UhpRSlGgVSzJoFkdAuhEX+AEt/XV9lChoBmgJaA9DCIZ1492REQHAlIaUUpRoFUsyaBZHQLoQ7pzLfUF1fZQoaAZoCWgPQwiAYI4evxcEwJSGlFKUaBVLMmgWR0C6EjCEYfnwdX2UKGgGaAloD0MIb7ckB+yqBMCUhpRSlGgVSzJoFkdAuhIIMvysjnV9lChoBmgJaA9DCHbhB+dTx/m/lIaUUpRoFUsyaBZHQLoR3hFmWdF1fZQoaAZoCWgPQwi0ci8wK3QKwJSGlFKUaBVLMmgWR0C6EbS31BdEdX2UKGgGaAloD0MITl/P1ywX/r+UhpRSlGgVSzJoFkdAuhMC06YE4nV9lChoBmgJaA9DCMWu7e2WhALAlIaUUpRoFUsyaBZHQLoS2o7FKkF1fZQoaAZoCWgPQwiuLNFZZtEDwJSGlFKUaBVLMmgWR0C6ErBJ/XoUdX2UKGgGaAloD0MIkIR9O4mI/L+UhpRSlGgVSzJoFkdAuhKG/etSynV9lChoBmgJaA9DCLafjPFhtv+/lIaUUpRoFUsyaBZHQLoT8XFLnLd1fZQoaAZoCWgPQwhwtU5cjmcRwJSGlFKUaBVLMmgWR0C6E8maQV9GdX2UKGgGaAloD0MItW/urx7XBsCUhpRSlGgVSzJoFkdAuhOf2TPjXHV9lChoBmgJaA9DCEUtza0QlgrAlIaUUpRoFUsyaBZHQLoTdyMDOkd1fZQoaAZoCWgPQwh0m3CvzJv2v5SGlFKUaBVLMmgWR0C6FNmMXJo1dX2UKGgGaAloD0MI2bJ8XYY/97+UhpRSlGgVSzJoFkdAuhSxRKpT/HV9lChoBmgJaA9DCDDzHfzEIQbAlIaUUpRoFUsyaBZHQLoUhyBClad1fZQoaAZoCWgPQwgQBwlRvqDtv5SGlFKUaBVLMmgWR0C6FF3M2WIHdX2UKGgGaAloD0MIhA66hENfEcCUhpRSlGgVSzJoFkdAuhWt9hJAdHV9lChoBmgJaA9DCJRnXg67jwvAlIaUUpRoFUsyaBZHQLoVhgOz6ad1fZQoaAZoCWgPQwhxyAbSxWYEwJSGlFKUaBVLMmgWR0C6FVvwEyLydX2UKGgGaAloD0MI7ZxmgXYnCsCUhpRSlGgVSzJoFkdAuhUypPykK3V9lChoBmgJaA9DCEAv3LkwUgnAlIaUUpRoFUsyaBZHQLoWk0Xxe9l1fZQoaAZoCWgPQwhmZ9E7FTAKwJSGlFKUaBVLMmgWR0C6Fmr7wazedX2UKGgGaAloD0MIxAq3fCRl87+UhpRSlGgVSzJoFkdAuhZAw/PgN3V9lChoBmgJaA9DCJoIG55e6fq/lIaUUpRoFUsyaBZHQLoWF2jfvWp1fZQoaAZoCWgPQwh0DTM0nkgFwJSGlFKUaBVLMmgWR0C6F2EUKzAvdX2UKGgGaAloD0MI9yAE5Euo7b+UhpRSlGgVSzJoFkdAuhc4yvcJt3V9lChoBmgJaA9DCO8eoPtyBgbAlIaUUpRoFUsyaBZHQLoXDpKBd2R1fZQoaAZoCWgPQwhi9NxCV6L8v5SGlFKUaBVLMmgWR0C6FuU6cRUWdX2UKGgGaAloD0MIl6lJ8Ib0/7+UhpRSlGgVSzJoFkdAuhhFeF+NLnV9lChoBmgJaA9DCA/xD1t6dPi/lIaUUpRoFUsyaBZHQLoYHS26TW51fZQoaAZoCWgPQwj6t8t+3SkLwJSGlFKUaBVLMmgWR0C6F/MSPEKmdX2UKGgGaAloD0MIuqEpO/1AC8CUhpRSlGgVSzJoFkdAuhfJrgwXZXV9lChoBmgJaA9DCBud81MchxLAlIaUUpRoFUsyaBZHQLoZAuwHJLd1fZQoaAZoCWgPQwgqx2Rx/xH1v5SGlFKUaBVLMmgWR0C6GNqhtcfOdX2UKGgGaAloD0MIBU8hV+q5DcCUhpRSlGgVSzJoFkdAuhiwbIcR2HV9lChoBmgJaA9DCPKWqx+bJAfAlIaUUpRoFUsyaBZHQLoYhwXIlt11fZQoaAZoCWgPQwhn8PeL2VL9v5SGlFKUaBVLMmgWR0C6GcyQgcLjdX2UKGgGaAloD0MI6xwDste79b+UhpRSlGgVSzJoFkdAuhmkS9M9KXV9lChoBmgJaA9DCKDDfHkBtg3AlIaUUpRoFUsyaBZHQLoZejRUm2N1fZQoaAZoCWgPQwjqlh3iH7b2v5SGlFKUaBVLMmgWR0C6GVE8aGYbdX2UKGgGaAloD0MImShC6na2CsCUhpRSlGgVSzJoFkdAuhqgomXw9nV9lChoBmgJaA9DCICAtWrXxAPAlIaUUpRoFUsyaBZHQLoaeFxGUfR1fZQoaAZoCWgPQwhPdjOjHw36v5SGlFKUaBVLMmgWR0C6Gk4ht+CsdX2UKGgGaAloD0MIt9Jrs7EyAcCUhpRSlGgVSzJoFkdAuhokunMt9XV9lChoBmgJaA9DCFLxf0dUCAzAlIaUUpRoFUsyaBZHQLobcs3yZrp1fZQoaAZoCWgPQwgUIApmTEH6v5SGlFKUaBVLMmgWR0C6G0qGQCCBdX2UKGgGaAloD0MIG2X9ZmK6+7+UhpRSlGgVSzJoFkdAuhsgcU/OdHV9lChoBmgJaA9DCL7bvHFSWADAlIaUUpRoFUsyaBZHQLoa91jRUm51fZQoaAZoCWgPQwhlNzP60VADwJSGlFKUaBVLMmgWR0C6HDesxO+JdX2UKGgGaAloD0MIfqzgtyEG+7+UhpRSlGgVSzJoFkdAuhwPWCmMwXV9lChoBmgJaA9DCIBjz57LFPe/lIaUUpRoFUsyaBZHQLob5StvGZN1fZQoaAZoCWgPQwiXkXpP5ZQJwJSGlFKUaBVLMmgWR0C6G7uws5GSdX2UKGgGaAloD0MInrKaridaA8CUhpRSlGgVSzJoFkdAuh0Bd6cAinV9lChoBmgJaA9DCOqwwi0fSf+/lIaUUpRoFUsyaBZHQLoc2Qgs9Sx1fZQoaAZoCWgPQwgctcL0vQb4v5SGlFKUaBVLMmgWR0C6HK7WqcVhdX2UKGgGaAloD0MIRn2SO2ziAsCUhpRSlGgVSzJoFkdAuhyFjYqXnnV9lChoBmgJaA9DCNfa+1QVGuq/lIaUUpRoFUsyaBZHQLod0aKUFB91fZQoaAZoCWgPQwjQ04BB0qf4v5SGlFKUaBVLMmgWR0C6Halfu1F6dX2UKGgGaAloD0MINuhLb3+u/L+UhpRSlGgVSzJoFkdAuh1/JlrdnHV9lChoBmgJaA9DCMjrwaT4eO2/lIaUUpRoFUsyaBZHQLodVccU/Od1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (307 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.6100650168955326, "std_reward": 0.7308804717304287, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-02T19:59:16.833685"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b6aa0a8f62353c04b68c2f6adea0e28b4da1e9c69b2f8efeb9a84442b958e35
|
3 |
+
size 2381
|