--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-r22-e results: [] --- # whisper-small-r22-e This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2918 - Wer: 21.3875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3822 | 0.09 | 10 | 0.4255 | 23.2826 | | 0.2636 | 0.18 | 20 | 0.3321 | 22.4196 | | 0.2037 | 0.27 | 30 | 0.3279 | 23.8071 | | 0.1943 | 0.36 | 40 | 0.3177 | 22.3858 | | 0.2203 | 0.45 | 50 | 0.3109 | 22.4873 | | 0.193 | 0.54 | 60 | 0.3071 | 22.9272 | | 0.2096 | 0.63 | 70 | 0.2990 | 22.6565 | | 0.214 | 0.72 | 80 | 0.3029 | 22.4873 | | 0.2375 | 0.81 | 90 | 0.2927 | 21.7259 | | 0.2238 | 0.9 | 100 | 0.2918 | 22.4196 | | 0.2119 | 0.99 | 110 | 0.2919 | 22.7580 | | 0.1362 | 1.08 | 120 | 0.2897 | 22.0135 | | 0.0997 | 1.17 | 130 | 0.2915 | 21.3029 | | 0.0824 | 1.26 | 140 | 0.2920 | 21.4382 | | 0.0923 | 1.35 | 150 | 0.2918 | 21.3875 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.7.dev0 - Tokenizers 0.14.1