File size: 20,006 Bytes
2cfb585
 
 
 
 
 
 
66f2d23
2cfb585
 
 
 
 
66f2d23
 
 
 
 
2cfb585
 
 
5cc765d
 
 
 
 
 
66f2d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cfb585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc765d
2cfb585
 
 
 
 
 
4e01d79
2cfb585
 
 
 
 
 
 
 
 
4e01d79
2cfb585
 
 
 
 
 
 
 
 
4e01d79
2cfb585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85b9e74
5cc765d
2cfb585
 
85b9e74
2cfb585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a4d2b1
2cfb585
 
85b9e74
2cfb585
 
 
4a4d2b1
 
cff3f8f
6f2022f
2cfb585
 
 
 
 
 
 
66f2d23
 
2cfb585
 
66f2d23
2cfb585
 
66f2d23
2cfb585
 
 
 
66f2d23
2cfb585
 
 
 
 
66f2d23
 
 
 
 
 
 
 
 
4a4d2b1
2cfb585
 
 
 
 
 
 
 
 
 
66f2d23
cff3f8f
 
 
2cfb585
 
4a4d2b1
2cfb585
5cc765d
66f2d23
5cc765d
d1a5e7a
2cfb585
66f2d23
2cfb585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85b9e74
2cfb585
 
 
 
 
 
 
 
 
 
 
 
d1a5e7a
2cfb585
 
 
 
 
 
 
 
66f2d23
 
d1a5e7a
c0c9f3c
66f2d23
 
5cc765d
d1a5e7a
 
 
66f2d23
 
2cfb585
4a4d2b1
 
2cfb585
 
 
 
 
 
 
4a4d2b1
cff3f8f
 
66f2d23
4a4d2b1
 
66f2d23
cff3f8f
2cfb585
66f2d23
2cfb585
 
 
 
 
 
 
66f2d23
4a4d2b1
 
2cfb585
 
 
4a4d2b1
cff3f8f
 
2cfb585
 
 
 
 
 
 
 
 
 
 
66f2d23
2cfb585
 
 
 
 
 
 
 
 
4a4d2b1
 
95c0f16
4a4d2b1
2cfb585
 
 
 
4a4d2b1
 
2cfb585
 
 
 
 
 
66f2d23
 
 
2cfb585
 
 
 
 
 
 
 
 
 
 
 
4a4d2b1
 
 
2cfb585
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
"""BD3LM model for Hugging Face.

"""
import math
import typing

import einops
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
from transformers import modeling_outputs
try:
  from torch.nn.attention.flex_attention import flex_attention, create_block_mask
  FLEX_ATTN_AVAILABLE = True
except:
  FLEX_ATTN_AVAILABLE = False

from .configuration_bd3lm import BD3LMConfig

# Flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)

def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
  """
  Constructs the specialized block diffusion attention mask for training
  composed of three masks:
  - **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
  - **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
  - **Block Causal Mask (M_BC)**: Attention to update x0

  Args:
      b, h: Batch and head indices (ignored for mask logic).
      q_idx, kv_idx: Query and Key indices.
      seq_len: Total sequence length.
      block_size: Defines the block structure.

  Returns:
      A boolean attention mask.
  """

  # Indicate whether token belongs to xt or x0
  x0_flag_q = (q_idx >= n)
  x0_flag_kv = (kv_idx >= n)

  # Compute block indices
  block_q = torch.where(x0_flag_q == 1,
                        (q_idx - n) // block_size,
                        q_idx // block_size)
  block_kv = torch.where(x0_flag_kv == 1,
                        (kv_idx - n) // block_size,
                        kv_idx // block_size)

  # **1. Block Diagonal Mask (M_BD) **
  block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)

  # **2. Offset Block-Causal Mask (M_OBC) **
  offset_block_causal = (
    (block_q > block_kv)
    & (x0_flag_kv == 1)
    & (x0_flag_q == 0)
  )

  # **3. Block-Causal Mask (M_BC) **
  block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)

  # **4. Combine Masks **
  return block_diagonal | offset_block_causal | block_causal

@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
def fused_flex_attention(q, k, v, mask=None):
    return flex_attention(q, k, v, block_mask=mask)

def bias_dropout_add_scale(
    x: torch.Tensor,
    bias: typing.Optional[torch.Tensor],
    scale: torch.Tensor,
    residual: typing.Optional[torch.Tensor],
    prob: float,
    training: bool) -> torch.Tensor:
  if bias is not None:
    out = scale * F.dropout(x + bias, p=prob, training=training)
  else:
    out = scale * F.dropout(x, p=prob, training=training)

  if residual is not None:
    out = residual + out
  return out


def get_bias_dropout_add_scale(training):
  def _bias_dropout_add(x, bias, scale, residual, prob):
    return bias_dropout_add_scale(
      x, bias, scale, residual, prob, training)

  return _bias_dropout_add


# function overload
def modulate(x: torch.Tensor,
             shift: torch.Tensor,
             scale: torch.Tensor) -> torch.Tensor:
  return x * (1 + scale) + shift

@torch.jit.script
def bias_dropout_add_scale_fused_train(
    x: torch.Tensor,
    bias: typing.Optional[torch.Tensor],
    scale: torch.Tensor,
    residual: typing.Optional[torch.Tensor],
    prob: float) -> torch.Tensor:
  return bias_dropout_add_scale(
    x, bias, scale, residual, prob, True)

@torch.jit.script
def bias_dropout_add_scale_fused_inference(
    x: torch.Tensor,
    bias: typing.Optional[torch.Tensor],
    scale: torch.Tensor,
    residual: typing.Optional[torch.Tensor],
    prob: float) -> torch.Tensor:
  return bias_dropout_add_scale(
    x, bias, scale, residual, prob, False)

@torch.jit.script
def modulate_fused(x: torch.Tensor,
                   shift: torch.Tensor,
                   scale: torch.Tensor) -> torch.Tensor:
  return modulate(x, shift, scale)


class Rotary(torch.nn.Module):
  def __init__(self, dim, base=10_000):
    super().__init__()
    inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
    self.register_buffer('inv_freq', inv_freq)
    self.seq_len_cached = None
    self.cos_cached = None
    self.sin_cached = None

  def forward(self, x, seq_dim=1):
    seq_len = x.shape[seq_dim]
    if seq_len != self.seq_len_cached:
      self.seq_len_cached = seq_len
      t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
      freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
      emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
      # dims are: batch, seq_len, qkv, head, dim
      self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
      self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
      # This makes the transformation on v an identity.
      self.cos_cached[:,:,2,:,:].fill_(1.)
      self.sin_cached[:,:,2,:,:].fill_(0.)

    return self.cos_cached, self.sin_cached


def rotate_half(x):
  x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
  return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb_torchscript(qkv, cos, sin):
    return (qkv * cos) + (rotate_half(qkv) * sin)

# function overload
def modulate(x, shift, scale):
  return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


#################################################################################
#                                  Layers                                       #
#################################################################################
class LayerNorm(nn.Module):
  def __init__(self, dim):
    super().__init__()
    self.weight = nn.Parameter(torch.ones([dim]))
    self.dim = dim
  def forward(self, x):
    with torch.cuda.amp.autocast(enabled=False):
      x = F.layer_norm(x.float(), [self.dim])
    return x * self.weight[None,None,:]


def residual_linear(x, W, x_skip, residual_scale):
  """x_skip + residual_scale * W @ x"""
  dim_out, dim_in = W.shape[0], W.shape[1]
  return torch.addmm(
    x_skip.view(-1, dim_out),
    x.view(-1, dim_in),
    W.T,
    alpha=residual_scale).view(*x.shape[:-1], dim_out)


#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################
class TimestepEmbedder(nn.Module):
  """
  Embeds scalar timesteps into vector representations.
  """
  def __init__(self, hidden_size, frequency_embedding_size=256):
    super().__init__()
    self.mlp = nn.Sequential(
      nn.Linear(frequency_embedding_size, hidden_size, bias=True),
      nn.SiLU(),
      nn.Linear(hidden_size, hidden_size, bias=True))
    self.frequency_embedding_size = frequency_embedding_size

  @staticmethod
  def timestep_embedding(t, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.
    :param t: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an (N, D) Tensor of positional embeddings.
    """
    # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
    half = dim // 2
    freqs = torch.exp(
      - math.log(max_period)
      * torch.arange(start=0, end=half, dtype=torch.float32)
      / half).to(device=t.device)
    args = t[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
      embedding = torch.cat(
        [embedding,
         torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding

  def forward(self, t):
    t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
    t_emb = self.mlp(t_freq)
    return t_emb


class LabelEmbedder(nn.Module):
  """Embeds class labels into vector representations.
  
  Also handles label dropout for classifier-free guidance.
  """
  def __init__(self, num_classes, cond_size):
    super().__init__()
    self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
    self.num_classes = num_classes

    # TODO think of initializing with 0.02 std deviation like in original DiT paper

  def forward(self, labels):
    embeddings = self.embedding_table(labels)
    return embeddings
    

#################################################################################
#                                 Core Model                                    #
#################################################################################

def regular_attention_multi_headed(qkv):
  # Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
  # where the 3 represents Q, K, V packed in that order
  batch_size, seq_len, _, num_heads, head_dim = qkv.shape
  # Separate Q, K, V from the packed qkv tensor
  # [batch_size, seq_len, num_heads, head_dim]
  q = qkv[:, :, 0, :, :]
  k = qkv[:, :, 1, :, :]
  v = qkv[:, :, 2, :, :]  

  # Transpose and reshape Q and K for batched matrix multiplication:
  # [batch_size, num_heads, seq_len, head_dim]
  q = q.transpose(1, 2)
  k = k.transpose(1, 2)
  v = v.transpose(1, 2)

  # Compute scaled dot-product attention
  # [batch_size, num_heads, seq_len, seq_len]
  attention_scores = torch.matmul(
    q, k.transpose(-2, -1)) / math.sqrt(head_dim)

  # Apply softmax to calculate the attention weights
  attention_probs = F.softmax(attention_scores, dim=-1)

  # [batch_size, num_heads, seq_len, head_dim]
  attention_output = torch.matmul(attention_probs, v)

  # [batch_size, seq_len, num_heads, head_dim]
  attention_output = attention_output.transpose(1, 2)
  return einops.rearrange(attention_output,
                          'b s h d -> b s (h d)')


class DDiTBlock(nn.Module):
  def __init__(self, n, block_size, dim, n_heads, cond_dim, mlp_ratio=4,
               dropout=0.1, attn_backend='sdpa'):
    super().__init__()
    self.n = n
    self.block_size = block_size
    self.n_heads = n_heads
    self.attn_backend = attn_backend
    self.kv_cache = None

    self.norm1 = LayerNorm(dim)
    self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
    self.attn_out = nn.Linear(dim, dim, bias=False)
    self.dropout1 = nn.Dropout(dropout)

    self.norm2 = LayerNorm(dim)
    self.mlp = nn.Sequential(
      nn.Linear(dim, mlp_ratio * dim, bias=True),
      nn.GELU(approximate='tanh'),
      nn.Linear(mlp_ratio * dim, dim, bias=True))
    self.dropout2 = nn.Dropout(dropout)
    self.dropout = dropout

    self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
    self.adaLN_modulation.weight.data.zero_()
    self.adaLN_modulation.bias.data.zero_()

  def _get_bias_dropout_scale(self):
    if self.training:
      return bias_dropout_add_scale_fused_train
    else:
      return bias_dropout_add_scale_fused_inference
  
  def get_qkv(self, x, rotary_cos_sin, store_kv=False):
    # compute qkv (potentially use cache)
    if self.kv_cache is not None:
      new_qkv = self.attn_qkv(x[:, -self.block_size:])
      qkv = torch.cat((self.kv_cache, new_qkv), dim=1)
    else:
      qkv = self.attn_qkv(x)
    # store kv cache in a sliding window (can't exceed context len)
    if store_kv:
      self.kv_cache = qkv[:, -(self.n-self.block_size):]

    qkv = einops.rearrange(
      qkv,
      'b s (three h d) -> b s three h d',
      three=3,
      h=self.n_heads)
    with torch.cuda.amp.autocast(enabled=False):
      cos, sin = rotary_cos_sin
      qkv = apply_rotary_pos_emb_torchscript(
        qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
    return qkv

  def cross_attn(self, x, qkv, mask=None):
    scale = qkv.shape[-1]
    qkv = qkv.transpose(1, 3)
    mask = mask.bool() if mask is not None else None
    x = F.scaled_dot_product_attention(
      query=qkv[:, :, 0],
      key=qkv[:, :, 1],
      value=qkv[:, :, 2],
      attn_mask=mask,
      is_causal=False,
      scale=1 / math.sqrt(scale))
    x = x.transpose(1, 2)
    x = einops.rearrange(x, 'b s h d -> b s (h d)')
    return x
  
  def cross_attn_flex(self, qkv, mask=None):
    qkv = einops.rearrange(qkv, 'b s three h d -> b h three s d', h=self.n_heads)
    x = fused_flex_attention(
      qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], mask=mask)
    x = einops.rearrange(x, 'b h s d -> b s (h d)')
    return x
  
  def forward(self, x, rotary_cos_sin, c, mask=None,
              sample_mode=False, store_kv=False):
    bias_dropout_scale_fn = self._get_bias_dropout_scale()

    (shift_msa, scale_msa, gate_msa, shift_mlp,
     scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)

    # attention operation
    x_skip = x
    x = modulate_fused(self.norm1(x), shift_msa, scale_msa)

    # get qkvs
    if mask is not None and not sample_mode:
      n = mask.shape[-1] // 2
      qkv_x = self.get_qkv(x[:,:n], rotary_cos_sin)
      qkv_x0 = self.get_qkv(x[:,n:], rotary_cos_sin)
      qkv = torch.cat((qkv_x, qkv_x0), dim=1)
    else:
      qkv = self.get_qkv(x, rotary_cos_sin, store_kv=store_kv)

    if self.attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
      x = self.cross_attn_flex(qkv, mask=mask)
    elif self.attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
      x = self.cross_attn(x, qkv, mask=mask)
    else:
      raise ValueError('Unknown attention backend')

    x = bias_dropout_scale_fn(self.attn_out(x),
                              None,
                              gate_msa,
                              x_skip,
                              self.dropout)

    # mlp operation
    x = bias_dropout_scale_fn(
      self.mlp(modulate_fused(
        self.norm2(x), shift_mlp, scale_mlp)),
      None, gate_mlp, x, self.dropout)
    return x


class EmbeddingLayer(nn.Module):
  def __init__(self, dim, vocab_dim):
    super().__init__()
    self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
    torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))

  def forward(self, x):
    return self.embedding[x]


class DDitFinalLayer(nn.Module):
  def __init__(self, hidden_size, out_channels, cond_dim):
    super().__init__()
    self.norm_final = LayerNorm(hidden_size)
    self.linear = nn.Linear(hidden_size, out_channels)
    self.linear.weight.data.zero_()
    self.linear.bias.data.zero_()

    self.adaLN_modulation = nn.Linear(cond_dim,
                                      2 * hidden_size,
                                      bias=True)
    self.adaLN_modulation.weight.data.zero_()
    self.adaLN_modulation.bias.data.zero_()


  def forward(self, x, c):
    shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
    x = modulate_fused(self.norm_final(x), shift, scale)
    x = self.linear(x)
    return x


class DITBackbone(nn.Module):
  def __init__(
      self,
      config: BD3LMConfig):
    super().__init__()

    self.config = config
    self.cross_attn = config.cross_attn
    self.block_size = config.block_size
    self.vocab_size = config.vocab_size
    self.n = config.model_length

    self.vocab_embed = EmbeddingLayer(
      config.hidden_dim,
      config.vocab_size)
    self.sigma_map = TimestepEmbedder(
      config.cond_dim)
    self.rotary_emb = Rotary(
      config.hidden_dim // config.n_heads)

    blocks = []
    for _ in range(config.n_blocks):
      blocks.append(DDiTBlock(self.n,
                              self.block_size,
                              config.hidden_dim,
                              config.n_heads,
                              config.cond_dim,
                              dropout=config.dropout,
                              attn_backend=config.attn_backend,))
    self.blocks = nn.ModuleList(blocks)

    self.output_layer = DDitFinalLayer(
      config.hidden_dim,
      config.vocab_size,
      config.cond_dim)
    if self.cross_attn:
      self.gen_mask(config.model_length, self.block_size, attn_backend=config.attn_backend)
    self.precision = torch.float32

  def _get_bias_dropout_scale(self):
    if self.training:
      return bias_dropout_add_scale_fused_train
    else:
      return bias_dropout_add_scale_fused_inference
    
  def gen_mask(self, seqlen, block_size, attn_backend='sdpa'):
    """Genererates attention mask"""
    if attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
      self.mask = create_block_mask(
        partial(block_diff_mask, block_size=block_size, n=seqlen),
        B=None, H=None, Q_LEN=seqlen*2, KV_LEN=seqlen*2)
    elif attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
      self.mask = block_diff_mask(
        b=None, h=None, q_idx=torch.arange(seqlen*2)[:, None], 
        kv_idx=torch.arange(seqlen*2)[None, :], block_size=block_size, n=seqlen)
    else:
      raise ValueError('Unknown attention backend')

  def forward(self, indices, sigma, sample_mode=False,
             store_kv=False, output_hidden_states=False):
    if not self.config.time_conditioning:
      sigma = torch.zeros_like(sigma)
    all_hidden_states = []
    x = self.vocab_embed(indices)
    if output_hidden_states:
      all_hidden_states.append(x)
    c = F.silu(self.sigma_map(sigma))
    if self.cross_attn:
      n = self.mask.shape[-1] // 2
      rotary_cos_sin = self.rotary_emb(x[:, :n])
      mask = self.mask.to(x.device)
      # use block-causal mask only during sampling
      if sample_mode:
        mask = mask[
          n:n+x.shape[1], n:n+x.shape[1]]
    else:
      mask = None
      rotary_cos_sin = self.rotary_emb(x)

    with torch.cuda.amp.autocast(dtype=self.precision):
      for i in range(len(self.blocks)):
        x = self.blocks[i](x, 
                           rotary_cos_sin,
                           c,
                           mask=mask,
                           sample_mode=sample_mode,
                           store_kv=store_kv)
        if output_hidden_states:
          all_hidden_states.append(x)
      logits = self.output_layer(x, c)
    if self.cross_attn and not sample_mode:
      logits = logits[:, :n]
      all_hidden_states = [hidden_states[:, :n] for hidden_states in all_hidden_states]
    return logits, all_hidden_states

class BD3LM(transformers.PreTrainedModel):
  """HF-compatible model."""
  config_class = BD3LMConfig
  base_model_prefix = "bd3lm"

  def __init__(
    self,
    config: BD3LMConfig):
    super().__init__(config)
    self.config = config
    self.backbone = DITBackbone(config)
    if config.var_min:
      self.register_buffer(
        'sampling_eps_min',
        torch.tensor(config.sampling_eps_min))
      self.register_buffer(
        'sampling_eps_max',
        torch.tensor(config.sampling_eps_max))

  def reset_kv_cache(self):
    for block in self.backbone.blocks:
      block.kv_cache = None

  def forward(
      self,
      input_ids: torch.LongTensor = None,
      timesteps: torch.FloatTensor = None,
      sample_mode: typing.Optional[bool] = None,
      store_kv: typing.Optional[bool] = None,
      output_hidden_states: typing.Optional[bool] = None,
      return_dict: typing.Optional[bool] = None,
  ) -> typing.Union[
    torch.Tensor, typing.Tuple,
    modeling_outputs.MaskedLMOutput]:
    """HF-compatible forward method."""
    if sample_mode:
      assert self.config.attn_backend == 'sdpa', 'Sampling only supported with SDPA'

    output_hidden_states = (
      output_hidden_states
      if output_hidden_states is not None
      else self.config.output_hidden_states
    )
    return_dict = return_dict \
      if return_dict is not None \
      else self.config.use_return_dict
    
    logits, all_hidden_states = self.backbone(
      indices=input_ids,
      sigma=timesteps,
      sample_mode=sample_mode,
      store_kv=store_kv,
      output_hidden_states=output_hidden_states,
    )
    if return_dict:
      return modeling_outputs.MaskedLMOutput(
        logits=logits,
        hidden_states=all_hidden_states if output_hidden_states else None,
        loss=None
      )
    elif output_hidden_states:
      return logits, all_hidden_states
    else:
      return logits