File size: 20,006 Bytes
2cfb585 66f2d23 2cfb585 66f2d23 2cfb585 5cc765d 66f2d23 2cfb585 5cc765d 2cfb585 4e01d79 2cfb585 4e01d79 2cfb585 4e01d79 2cfb585 85b9e74 5cc765d 2cfb585 85b9e74 2cfb585 4a4d2b1 2cfb585 85b9e74 2cfb585 4a4d2b1 cff3f8f 6f2022f 2cfb585 66f2d23 2cfb585 66f2d23 2cfb585 66f2d23 2cfb585 66f2d23 2cfb585 66f2d23 4a4d2b1 2cfb585 66f2d23 cff3f8f 2cfb585 4a4d2b1 2cfb585 5cc765d 66f2d23 5cc765d d1a5e7a 2cfb585 66f2d23 2cfb585 85b9e74 2cfb585 d1a5e7a 2cfb585 66f2d23 d1a5e7a c0c9f3c 66f2d23 5cc765d d1a5e7a 66f2d23 2cfb585 4a4d2b1 2cfb585 4a4d2b1 cff3f8f 66f2d23 4a4d2b1 66f2d23 cff3f8f 2cfb585 66f2d23 2cfb585 66f2d23 4a4d2b1 2cfb585 4a4d2b1 cff3f8f 2cfb585 66f2d23 2cfb585 4a4d2b1 95c0f16 4a4d2b1 2cfb585 4a4d2b1 2cfb585 66f2d23 2cfb585 4a4d2b1 2cfb585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
"""BD3LM model for Hugging Face.
"""
import math
import typing
import einops
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
from transformers import modeling_outputs
try:
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
FLEX_ATTN_AVAILABLE = True
except:
FLEX_ATTN_AVAILABLE = False
from .configuration_bd3lm import BD3LMConfig
# Flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
"""
Constructs the specialized block diffusion attention mask for training
composed of three masks:
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
- **Block Causal Mask (M_BC)**: Attention to update x0
Args:
b, h: Batch and head indices (ignored for mask logic).
q_idx, kv_idx: Query and Key indices.
seq_len: Total sequence length.
block_size: Defines the block structure.
Returns:
A boolean attention mask.
"""
# Indicate whether token belongs to xt or x0
x0_flag_q = (q_idx >= n)
x0_flag_kv = (kv_idx >= n)
# Compute block indices
block_q = torch.where(x0_flag_q == 1,
(q_idx - n) // block_size,
q_idx // block_size)
block_kv = torch.where(x0_flag_kv == 1,
(kv_idx - n) // block_size,
kv_idx // block_size)
# **1. Block Diagonal Mask (M_BD) **
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
# **2. Offset Block-Causal Mask (M_OBC) **
offset_block_causal = (
(block_q > block_kv)
& (x0_flag_kv == 1)
& (x0_flag_q == 0)
)
# **3. Block-Causal Mask (M_BC) **
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
# **4. Combine Masks **
return block_diagonal | offset_block_causal | block_causal
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
def fused_flex_attention(q, k, v, mask=None):
return flex_attention(q, k, v, block_mask=mask)
def bias_dropout_add_scale(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: torch.Tensor,
residual: typing.Optional[torch.Tensor],
prob: float,
training: bool) -> torch.Tensor:
if bias is not None:
out = scale * F.dropout(x + bias, p=prob, training=training)
else:
out = scale * F.dropout(x, p=prob, training=training)
if residual is not None:
out = residual + out
return out
def get_bias_dropout_add_scale(training):
def _bias_dropout_add(x, bias, scale, residual, prob):
return bias_dropout_add_scale(
x, bias, scale, residual, prob, training)
return _bias_dropout_add
# function overload
def modulate(x: torch.Tensor,
shift: torch.Tensor,
scale: torch.Tensor) -> torch.Tensor:
return x * (1 + scale) + shift
@torch.jit.script
def bias_dropout_add_scale_fused_train(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: torch.Tensor,
residual: typing.Optional[torch.Tensor],
prob: float) -> torch.Tensor:
return bias_dropout_add_scale(
x, bias, scale, residual, prob, True)
@torch.jit.script
def bias_dropout_add_scale_fused_inference(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: torch.Tensor,
residual: typing.Optional[torch.Tensor],
prob: float) -> torch.Tensor:
return bias_dropout_add_scale(
x, bias, scale, residual, prob, False)
@torch.jit.script
def modulate_fused(x: torch.Tensor,
shift: torch.Tensor,
scale: torch.Tensor) -> torch.Tensor:
return modulate(x, shift, scale)
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10_000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x, seq_dim=1):
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
# dims are: batch, seq_len, qkv, head, dim
self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
# This makes the transformation on v an identity.
self.cos_cached[:,:,2,:,:].fill_(1.)
self.sin_cached[:,:,2,:,:].fill_(0.)
return self.cos_cached, self.sin_cached
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_torchscript(qkv, cos, sin):
return (qkv * cos) + (rotate_half(qkv) * sin)
# function overload
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Layers #
#################################################################################
class LayerNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.weight = nn.Parameter(torch.ones([dim]))
self.dim = dim
def forward(self, x):
with torch.cuda.amp.autocast(enabled=False):
x = F.layer_norm(x.float(), [self.dim])
return x * self.weight[None,None,:]
def residual_linear(x, W, x_skip, residual_scale):
"""x_skip + residual_scale * W @ x"""
dim_out, dim_in = W.shape[0], W.shape[1]
return torch.addmm(
x_skip.view(-1, dim_out),
x.view(-1, dim_in),
W.T,
alpha=residual_scale).view(*x.shape[:-1], dim_out)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True))
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
- math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding,
torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""Embeds class labels into vector representations.
Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, cond_size):
super().__init__()
self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
self.num_classes = num_classes
# TODO think of initializing with 0.02 std deviation like in original DiT paper
def forward(self, labels):
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# Core Model #
#################################################################################
def regular_attention_multi_headed(qkv):
# Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
# where the 3 represents Q, K, V packed in that order
batch_size, seq_len, _, num_heads, head_dim = qkv.shape
# Separate Q, K, V from the packed qkv tensor
# [batch_size, seq_len, num_heads, head_dim]
q = qkv[:, :, 0, :, :]
k = qkv[:, :, 1, :, :]
v = qkv[:, :, 2, :, :]
# Transpose and reshape Q and K for batched matrix multiplication:
# [batch_size, num_heads, seq_len, head_dim]
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
# Compute scaled dot-product attention
# [batch_size, num_heads, seq_len, seq_len]
attention_scores = torch.matmul(
q, k.transpose(-2, -1)) / math.sqrt(head_dim)
# Apply softmax to calculate the attention weights
attention_probs = F.softmax(attention_scores, dim=-1)
# [batch_size, num_heads, seq_len, head_dim]
attention_output = torch.matmul(attention_probs, v)
# [batch_size, seq_len, num_heads, head_dim]
attention_output = attention_output.transpose(1, 2)
return einops.rearrange(attention_output,
'b s h d -> b s (h d)')
class DDiTBlock(nn.Module):
def __init__(self, n, block_size, dim, n_heads, cond_dim, mlp_ratio=4,
dropout=0.1, attn_backend='sdpa'):
super().__init__()
self.n = n
self.block_size = block_size
self.n_heads = n_heads
self.attn_backend = attn_backend
self.kv_cache = None
self.norm1 = LayerNorm(dim)
self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
self.attn_out = nn.Linear(dim, dim, bias=False)
self.dropout1 = nn.Dropout(dropout)
self.norm2 = LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, mlp_ratio * dim, bias=True),
nn.GELU(approximate='tanh'),
nn.Linear(mlp_ratio * dim, dim, bias=True))
self.dropout2 = nn.Dropout(dropout)
self.dropout = dropout
self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def _get_bias_dropout_scale(self):
if self.training:
return bias_dropout_add_scale_fused_train
else:
return bias_dropout_add_scale_fused_inference
def get_qkv(self, x, rotary_cos_sin, store_kv=False):
# compute qkv (potentially use cache)
if self.kv_cache is not None:
new_qkv = self.attn_qkv(x[:, -self.block_size:])
qkv = torch.cat((self.kv_cache, new_qkv), dim=1)
else:
qkv = self.attn_qkv(x)
# store kv cache in a sliding window (can't exceed context len)
if store_kv:
self.kv_cache = qkv[:, -(self.n-self.block_size):]
qkv = einops.rearrange(
qkv,
'b s (three h d) -> b s three h d',
three=3,
h=self.n_heads)
with torch.cuda.amp.autocast(enabled=False):
cos, sin = rotary_cos_sin
qkv = apply_rotary_pos_emb_torchscript(
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
return qkv
def cross_attn(self, x, qkv, mask=None):
scale = qkv.shape[-1]
qkv = qkv.transpose(1, 3)
mask = mask.bool() if mask is not None else None
x = F.scaled_dot_product_attention(
query=qkv[:, :, 0],
key=qkv[:, :, 1],
value=qkv[:, :, 2],
attn_mask=mask,
is_causal=False,
scale=1 / math.sqrt(scale))
x = x.transpose(1, 2)
x = einops.rearrange(x, 'b s h d -> b s (h d)')
return x
def cross_attn_flex(self, qkv, mask=None):
qkv = einops.rearrange(qkv, 'b s three h d -> b h three s d', h=self.n_heads)
x = fused_flex_attention(
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], mask=mask)
x = einops.rearrange(x, 'b h s d -> b s (h d)')
return x
def forward(self, x, rotary_cos_sin, c, mask=None,
sample_mode=False, store_kv=False):
bias_dropout_scale_fn = self._get_bias_dropout_scale()
(shift_msa, scale_msa, gate_msa, shift_mlp,
scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
# attention operation
x_skip = x
x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
# get qkvs
if mask is not None and not sample_mode:
n = mask.shape[-1] // 2
qkv_x = self.get_qkv(x[:,:n], rotary_cos_sin)
qkv_x0 = self.get_qkv(x[:,n:], rotary_cos_sin)
qkv = torch.cat((qkv_x, qkv_x0), dim=1)
else:
qkv = self.get_qkv(x, rotary_cos_sin, store_kv=store_kv)
if self.attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
x = self.cross_attn_flex(qkv, mask=mask)
elif self.attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
x = self.cross_attn(x, qkv, mask=mask)
else:
raise ValueError('Unknown attention backend')
x = bias_dropout_scale_fn(self.attn_out(x),
None,
gate_msa,
x_skip,
self.dropout)
# mlp operation
x = bias_dropout_scale_fn(
self.mlp(modulate_fused(
self.norm2(x), shift_mlp, scale_mlp)),
None, gate_mlp, x, self.dropout)
return x
class EmbeddingLayer(nn.Module):
def __init__(self, dim, vocab_dim):
super().__init__()
self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
def forward(self, x):
return self.embedding[x]
class DDitFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, cond_dim):
super().__init__()
self.norm_final = LayerNorm(hidden_size)
self.linear = nn.Linear(hidden_size, out_channels)
self.linear.weight.data.zero_()
self.linear.bias.data.zero_()
self.adaLN_modulation = nn.Linear(cond_dim,
2 * hidden_size,
bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
x = modulate_fused(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DITBackbone(nn.Module):
def __init__(
self,
config: BD3LMConfig):
super().__init__()
self.config = config
self.cross_attn = config.cross_attn
self.block_size = config.block_size
self.vocab_size = config.vocab_size
self.n = config.model_length
self.vocab_embed = EmbeddingLayer(
config.hidden_dim,
config.vocab_size)
self.sigma_map = TimestepEmbedder(
config.cond_dim)
self.rotary_emb = Rotary(
config.hidden_dim // config.n_heads)
blocks = []
for _ in range(config.n_blocks):
blocks.append(DDiTBlock(self.n,
self.block_size,
config.hidden_dim,
config.n_heads,
config.cond_dim,
dropout=config.dropout,
attn_backend=config.attn_backend,))
self.blocks = nn.ModuleList(blocks)
self.output_layer = DDitFinalLayer(
config.hidden_dim,
config.vocab_size,
config.cond_dim)
if self.cross_attn:
self.gen_mask(config.model_length, self.block_size, attn_backend=config.attn_backend)
self.precision = torch.float32
def _get_bias_dropout_scale(self):
if self.training:
return bias_dropout_add_scale_fused_train
else:
return bias_dropout_add_scale_fused_inference
def gen_mask(self, seqlen, block_size, attn_backend='sdpa'):
"""Genererates attention mask"""
if attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
self.mask = create_block_mask(
partial(block_diff_mask, block_size=block_size, n=seqlen),
B=None, H=None, Q_LEN=seqlen*2, KV_LEN=seqlen*2)
elif attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
self.mask = block_diff_mask(
b=None, h=None, q_idx=torch.arange(seqlen*2)[:, None],
kv_idx=torch.arange(seqlen*2)[None, :], block_size=block_size, n=seqlen)
else:
raise ValueError('Unknown attention backend')
def forward(self, indices, sigma, sample_mode=False,
store_kv=False, output_hidden_states=False):
if not self.config.time_conditioning:
sigma = torch.zeros_like(sigma)
all_hidden_states = []
x = self.vocab_embed(indices)
if output_hidden_states:
all_hidden_states.append(x)
c = F.silu(self.sigma_map(sigma))
if self.cross_attn:
n = self.mask.shape[-1] // 2
rotary_cos_sin = self.rotary_emb(x[:, :n])
mask = self.mask.to(x.device)
# use block-causal mask only during sampling
if sample_mode:
mask = mask[
n:n+x.shape[1], n:n+x.shape[1]]
else:
mask = None
rotary_cos_sin = self.rotary_emb(x)
with torch.cuda.amp.autocast(dtype=self.precision):
for i in range(len(self.blocks)):
x = self.blocks[i](x,
rotary_cos_sin,
c,
mask=mask,
sample_mode=sample_mode,
store_kv=store_kv)
if output_hidden_states:
all_hidden_states.append(x)
logits = self.output_layer(x, c)
if self.cross_attn and not sample_mode:
logits = logits[:, :n]
all_hidden_states = [hidden_states[:, :n] for hidden_states in all_hidden_states]
return logits, all_hidden_states
class BD3LM(transformers.PreTrainedModel):
"""HF-compatible model."""
config_class = BD3LMConfig
base_model_prefix = "bd3lm"
def __init__(
self,
config: BD3LMConfig):
super().__init__(config)
self.config = config
self.backbone = DITBackbone(config)
if config.var_min:
self.register_buffer(
'sampling_eps_min',
torch.tensor(config.sampling_eps_min))
self.register_buffer(
'sampling_eps_max',
torch.tensor(config.sampling_eps_max))
def reset_kv_cache(self):
for block in self.backbone.blocks:
block.kv_cache = None
def forward(
self,
input_ids: torch.LongTensor = None,
timesteps: torch.FloatTensor = None,
sample_mode: typing.Optional[bool] = None,
store_kv: typing.Optional[bool] = None,
output_hidden_states: typing.Optional[bool] = None,
return_dict: typing.Optional[bool] = None,
) -> typing.Union[
torch.Tensor, typing.Tuple,
modeling_outputs.MaskedLMOutput]:
"""HF-compatible forward method."""
if sample_mode:
assert self.config.attn_backend == 'sdpa', 'Sampling only supported with SDPA'
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = return_dict \
if return_dict is not None \
else self.config.use_return_dict
logits, all_hidden_states = self.backbone(
indices=input_ids,
sigma=timesteps,
sample_mode=sample_mode,
store_kv=store_kv,
output_hidden_states=output_hidden_states,
)
if return_dict:
return modeling_outputs.MaskedLMOutput(
logits=logits,
hidden_states=all_hidden_states if output_hidden_states else None,
loss=None
)
elif output_hidden_states:
return logits, all_hidden_states
else:
return logits |