"""BD3LM model for Hugging Face. """ import math import typing import einops from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import transformers from transformers import modeling_outputs try: from torch.nn.attention.flex_attention import flex_attention, create_block_mask FLEX_ATTN_AVAILABLE = True except: FLEX_ATTN_AVAILABLE = False from .configuration_bd3lm import BD3LMConfig # Flags required to enable jit fusion kernels torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None): """ Constructs the specialized block diffusion attention mask for training composed of three masks: - **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks - **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context - **Block Causal Mask (M_BC)**: Attention to update x0 Args: b, h: Batch and head indices (ignored for mask logic). q_idx, kv_idx: Query and Key indices. seq_len: Total sequence length. block_size: Defines the block structure. Returns: A boolean attention mask. """ # Indicate whether token belongs to xt or x0 x0_flag_q = (q_idx >= n) x0_flag_kv = (kv_idx >= n) # Compute block indices block_q = torch.where(x0_flag_q == 1, (q_idx - n) // block_size, q_idx // block_size) block_kv = torch.where(x0_flag_kv == 1, (kv_idx - n) // block_size, kv_idx // block_size) # **1. Block Diagonal Mask (M_BD) ** block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv) # **2. Offset Block-Causal Mask (M_OBC) ** offset_block_causal = ( (block_q > block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 0) ) # **3. Block-Causal Mask (M_BC) ** block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1) # **4. Combine Masks ** return block_diagonal | offset_block_causal | block_causal @torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs") def fused_flex_attention(q, k, v, mask=None): return flex_attention(q, k, v, block_mask=mask) def bias_dropout_add_scale( x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: torch.Tensor, residual: typing.Optional[torch.Tensor], prob: float, training: bool) -> torch.Tensor: if bias is not None: out = scale * F.dropout(x + bias, p=prob, training=training) else: out = scale * F.dropout(x, p=prob, training=training) if residual is not None: out = residual + out return out def get_bias_dropout_add_scale(training): def _bias_dropout_add(x, bias, scale, residual, prob): return bias_dropout_add_scale( x, bias, scale, residual, prob, training) return _bias_dropout_add # function overload def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor: return x * (1 + scale) + shift @torch.jit.script def bias_dropout_add_scale_fused_train( x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: torch.Tensor, residual: typing.Optional[torch.Tensor], prob: float) -> torch.Tensor: return bias_dropout_add_scale( x, bias, scale, residual, prob, True) @torch.jit.script def bias_dropout_add_scale_fused_inference( x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: torch.Tensor, residual: typing.Optional[torch.Tensor], prob: float) -> torch.Tensor: return bias_dropout_add_scale( x, bias, scale, residual, prob, False) @torch.jit.script def modulate_fused(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor: return modulate(x, shift, scale) class Rotary(torch.nn.Module): def __init__(self, dim, base=10_000): super().__init__() inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x, seq_dim=1): seq_len = x.shape[seq_dim] if seq_len != self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone()) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) # dims are: batch, seq_len, qkv, head, dim self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1) self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1) # This makes the transformation on v an identity. self.cos_cached[:,:,2,:,:].fill_(1.) self.sin_cached[:,:,2,:,:].fill_(0.) return self.cos_cached, self.sin_cached def rotate_half(x): x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb_torchscript(qkv, cos, sin): return (qkv * cos) + (rotate_half(qkv) * sin) # function overload def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Layers # ################################################################################# class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.weight = nn.Parameter(torch.ones([dim])) self.dim = dim def forward(self, x): with torch.cuda.amp.autocast(enabled=False): x = F.layer_norm(x.float(), [self.dim]) return x * self.weight[None,None,:] def residual_linear(x, W, x_skip, residual_scale): """x_skip + residual_scale * W @ x""" dim_out, dim_in = W.shape[0], W.shape[1] return torch.addmm( x_skip.view(-1, dim_out), x.view(-1, dim_in), W.T, alpha=residual_scale).view(*x.shape[:-1], dim_out) ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True)) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( - math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, cond_size): super().__init__() self.embedding_table = nn.Embedding(num_classes + 1, cond_size) self.num_classes = num_classes # TODO think of initializing with 0.02 std deviation like in original DiT paper def forward(self, labels): embeddings = self.embedding_table(labels) return embeddings ################################################################################# # Core Model # ################################################################################# def regular_attention_multi_headed(qkv): # Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim] # where the 3 represents Q, K, V packed in that order batch_size, seq_len, _, num_heads, head_dim = qkv.shape # Separate Q, K, V from the packed qkv tensor # [batch_size, seq_len, num_heads, head_dim] q = qkv[:, :, 0, :, :] k = qkv[:, :, 1, :, :] v = qkv[:, :, 2, :, :] # Transpose and reshape Q and K for batched matrix multiplication: # [batch_size, num_heads, seq_len, head_dim] q = q.transpose(1, 2) k = k.transpose(1, 2) v = v.transpose(1, 2) # Compute scaled dot-product attention # [batch_size, num_heads, seq_len, seq_len] attention_scores = torch.matmul( q, k.transpose(-2, -1)) / math.sqrt(head_dim) # Apply softmax to calculate the attention weights attention_probs = F.softmax(attention_scores, dim=-1) # [batch_size, num_heads, seq_len, head_dim] attention_output = torch.matmul(attention_probs, v) # [batch_size, seq_len, num_heads, head_dim] attention_output = attention_output.transpose(1, 2) return einops.rearrange(attention_output, 'b s h d -> b s (h d)') class DDiTBlock(nn.Module): def __init__(self, n, block_size, dim, n_heads, cond_dim, mlp_ratio=4, dropout=0.1, attn_backend='sdpa'): super().__init__() self.n = n self.block_size = block_size self.n_heads = n_heads self.attn_backend = attn_backend self.kv_cache = None self.norm1 = LayerNorm(dim) self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False) self.attn_out = nn.Linear(dim, dim, bias=False) self.dropout1 = nn.Dropout(dropout) self.norm2 = LayerNorm(dim) self.mlp = nn.Sequential( nn.Linear(dim, mlp_ratio * dim, bias=True), nn.GELU(approximate='tanh'), nn.Linear(mlp_ratio * dim, dim, bias=True)) self.dropout2 = nn.Dropout(dropout) self.dropout = dropout self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True) self.adaLN_modulation.weight.data.zero_() self.adaLN_modulation.bias.data.zero_() def _get_bias_dropout_scale(self): if self.training: return bias_dropout_add_scale_fused_train else: return bias_dropout_add_scale_fused_inference def get_qkv(self, x, rotary_cos_sin, store_kv=False): # compute qkv (potentially use cache) if self.kv_cache is not None: new_qkv = self.attn_qkv(x[:, -self.block_size:]) qkv = torch.cat((self.kv_cache, new_qkv), dim=1) else: qkv = self.attn_qkv(x) # store kv cache in a sliding window (can't exceed context len) if store_kv: self.kv_cache = qkv[:, -(self.n-self.block_size):] qkv = einops.rearrange( qkv, 'b s (three h d) -> b s three h d', three=3, h=self.n_heads) with torch.cuda.amp.autocast(enabled=False): cos, sin = rotary_cos_sin qkv = apply_rotary_pos_emb_torchscript( qkv, cos.to(qkv.dtype), sin.to(qkv.dtype)) return qkv def cross_attn(self, x, qkv, mask=None): scale = qkv.shape[-1] qkv = qkv.transpose(1, 3) mask = mask.bool() if mask is not None else None x = F.scaled_dot_product_attention( query=qkv[:, :, 0], key=qkv[:, :, 1], value=qkv[:, :, 2], attn_mask=mask, is_causal=False, scale=1 / math.sqrt(scale)) x = x.transpose(1, 2) x = einops.rearrange(x, 'b s h d -> b s (h d)') return x def cross_attn_flex(self, qkv, mask=None): qkv = einops.rearrange(qkv, 'b s three h d -> b h three s d', h=self.n_heads) x = fused_flex_attention( qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], mask=mask) x = einops.rearrange(x, 'b h s d -> b s (h d)') return x def forward(self, x, rotary_cos_sin, c, mask=None, sample_mode=False, store_kv=False): bias_dropout_scale_fn = self._get_bias_dropout_scale() (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2) # attention operation x_skip = x x = modulate_fused(self.norm1(x), shift_msa, scale_msa) # get qkvs if mask is not None and not sample_mode: n = mask.shape[-1] // 2 qkv_x = self.get_qkv(x[:,:n], rotary_cos_sin) qkv_x0 = self.get_qkv(x[:,n:], rotary_cos_sin) qkv = torch.cat((qkv_x, qkv_x0), dim=1) else: qkv = self.get_qkv(x, rotary_cos_sin, store_kv=store_kv) if self.attn_backend == 'flex' and FLEX_ATTN_AVAILABLE: x = self.cross_attn_flex(qkv, mask=mask) elif self.attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE: x = self.cross_attn(x, qkv, mask=mask) else: raise ValueError('Unknown attention backend') x = bias_dropout_scale_fn(self.attn_out(x), None, gate_msa, x_skip, self.dropout) # mlp operation x = bias_dropout_scale_fn( self.mlp(modulate_fused( self.norm2(x), shift_mlp, scale_mlp)), None, gate_mlp, x, self.dropout) return x class EmbeddingLayer(nn.Module): def __init__(self, dim, vocab_dim): super().__init__() self.embedding = nn.Parameter(torch.empty((vocab_dim, dim))) torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5)) def forward(self, x): return self.embedding[x] class DDitFinalLayer(nn.Module): def __init__(self, hidden_size, out_channels, cond_dim): super().__init__() self.norm_final = LayerNorm(hidden_size) self.linear = nn.Linear(hidden_size, out_channels) self.linear.weight.data.zero_() self.linear.bias.data.zero_() self.adaLN_modulation = nn.Linear(cond_dim, 2 * hidden_size, bias=True) self.adaLN_modulation.weight.data.zero_() self.adaLN_modulation.bias.data.zero_() def forward(self, x, c): shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2) x = modulate_fused(self.norm_final(x), shift, scale) x = self.linear(x) return x class DITBackbone(nn.Module): def __init__( self, config: BD3LMConfig): super().__init__() self.config = config self.cross_attn = config.cross_attn self.block_size = config.block_size self.vocab_size = config.vocab_size self.n = config.model_length self.vocab_embed = EmbeddingLayer( config.hidden_dim, config.vocab_size) self.sigma_map = TimestepEmbedder( config.cond_dim) self.rotary_emb = Rotary( config.hidden_dim // config.n_heads) blocks = [] for _ in range(config.n_blocks): blocks.append(DDiTBlock(self.n, self.block_size, config.hidden_dim, config.n_heads, config.cond_dim, dropout=config.dropout, attn_backend=config.attn_backend,)) self.blocks = nn.ModuleList(blocks) self.output_layer = DDitFinalLayer( config.hidden_dim, config.vocab_size, config.cond_dim) if self.cross_attn: self.gen_mask(config.model_length, self.block_size, attn_backend=config.attn_backend) self.precision = torch.float32 def _get_bias_dropout_scale(self): if self.training: return bias_dropout_add_scale_fused_train else: return bias_dropout_add_scale_fused_inference def gen_mask(self, seqlen, block_size, attn_backend='sdpa'): """Genererates attention mask""" if attn_backend == 'flex' and FLEX_ATTN_AVAILABLE: self.mask = create_block_mask( partial(block_diff_mask, block_size=block_size, n=seqlen), B=None, H=None, Q_LEN=seqlen*2, KV_LEN=seqlen*2) elif attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE: self.mask = block_diff_mask( b=None, h=None, q_idx=torch.arange(seqlen*2)[:, None], kv_idx=torch.arange(seqlen*2)[None, :], block_size=block_size, n=seqlen) else: raise ValueError('Unknown attention backend') def forward(self, indices, sigma, sample_mode=False, store_kv=False, output_hidden_states=False): if not self.config.time_conditioning: sigma = torch.zeros_like(sigma) all_hidden_states = [] x = self.vocab_embed(indices) if output_hidden_states: all_hidden_states.append(x) c = F.silu(self.sigma_map(sigma)) if self.cross_attn: n = self.mask.shape[-1] // 2 rotary_cos_sin = self.rotary_emb(x[:, :n]) mask = self.mask.to(x.device) # use block-causal mask only during sampling if sample_mode: mask = mask[ n:n+x.shape[1], n:n+x.shape[1]] else: mask = None rotary_cos_sin = self.rotary_emb(x) with torch.cuda.amp.autocast(dtype=self.precision): for i in range(len(self.blocks)): x = self.blocks[i](x, rotary_cos_sin, c, mask=mask, sample_mode=sample_mode, store_kv=store_kv) if output_hidden_states: all_hidden_states.append(x) logits = self.output_layer(x, c) if self.cross_attn and not sample_mode: logits = logits[:, :n] all_hidden_states = [hidden_states[:, :n] for hidden_states in all_hidden_states] return logits, all_hidden_states class BD3LM(transformers.PreTrainedModel): """HF-compatible model.""" config_class = BD3LMConfig base_model_prefix = "bd3lm" def __init__( self, config: BD3LMConfig): super().__init__(config) self.config = config self.backbone = DITBackbone(config) if config.var_min: self.register_buffer( 'sampling_eps_min', torch.tensor(config.sampling_eps_min)) self.register_buffer( 'sampling_eps_max', torch.tensor(config.sampling_eps_max)) def reset_kv_cache(self): for block in self.backbone.blocks: block.kv_cache = None def forward( self, input_ids: torch.LongTensor = None, timesteps: torch.FloatTensor = None, sample_mode: typing.Optional[bool] = None, store_kv: typing.Optional[bool] = None, output_hidden_states: typing.Optional[bool] = None, return_dict: typing.Optional[bool] = None, ) -> typing.Union[ torch.Tensor, typing.Tuple, modeling_outputs.MaskedLMOutput]: """HF-compatible forward method.""" if sample_mode: assert self.config.attn_backend == 'sdpa', 'Sampling only supported with SDPA' output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict \ if return_dict is not None \ else self.config.use_return_dict logits, all_hidden_states = self.backbone( indices=input_ids, sigma=timesteps, sample_mode=sample_mode, store_kv=store_kv, output_hidden_states=output_hidden_states, ) if return_dict: return modeling_outputs.MaskedLMOutput( logits=logits, hidden_states=all_hidden_states if output_hidden_states else None, loss=None ) elif output_hidden_states: return logits, all_hidden_states else: return logits