|
import requests |
|
from typing import Dict, Any |
|
from PIL import Image |
|
import torch |
|
import base64 |
|
import io |
|
from transformers import BlipForConditionalGeneration, BlipProcessor |
|
import logging |
|
from io import BytesIO |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logging.basicConfig(level=logging.ERROR) |
|
|
|
logging.basicConfig(level=logging.WARNING) |
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device) |
|
self.model.eval() |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
logging.error(f"----------This is an error message {str(data)}") |
|
input_data = data.get("inputs", {}) |
|
logging.warning(f"------input_data-- {str(input_data)}") |
|
encoded_images = input_data.get("url") |
|
print("url---",encoded_images) |
|
|
|
|
|
|
|
|
|
|
|
response = requests.get(encoded_images) |
|
|
|
|
|
image_data = BytesIO(response.content) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not encoded_images: |
|
logging.warning(f"---encoded_images--not provided in if block--- {str(encoded_images)}") |
|
return {"captions": [], "error": "No images provided"} |
|
try: |
|
logging.warning(f"---encoded_images-- provided in try block--- {str(encoded_images)}") |
|
byteImgIO = io.BytesIO() |
|
|
|
byteImg = Image.open(image_data) |
|
print("testing img---byteImg-----------", byteImg) |
|
byteImg.save(byteImgIO, "PNG") |
|
byteImgIO.seek(0) |
|
byteImg = byteImgIO.read() |
|
|
|
|
|
|
|
dataBytesIO = io.BytesIO(byteImg) |
|
raw_images =[Image.open(dataBytesIO)] |
|
logging.warning(f"----raw_images----0--- {str(raw_images)}") |
|
|
|
if not raw_images: |
|
print("No valid images found.") |
|
processed_inputs = [ |
|
self.processor(image, return_tensors="pt") for image in zip(raw_images) |
|
] |
|
processed_inputs = { |
|
"pixel_values": torch.cat([inp["pixel_values"] for inp in processed_inputs], dim=0).to(device), |
|
"max_new_tokens":40 |
|
} |
|
with torch.no_grad(): |
|
out = self.model.generate(**processed_inputs) |
|
|
|
captions = self.processor.batch_decode(out, skip_special_tokens=True) |
|
logging.warning(f"----captions---- {str(captions)}") |
|
print("caption is here-------",captions) |
|
return {"captions": captions} |
|
except Exception as e: |
|
print(f"Error during processing: {str(e)}") |
|
logging.error(f"Error during processing: ----------------{str(e)}") |
|
return {"captions": [], "error": str(e)} |