Update handler.py
Browse files- handler.py +6 -4
handler.py
CHANGED
@@ -15,12 +15,15 @@ class EndpointHandler():
|
|
15 |
self.model.eval()
|
16 |
|
17 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
18 |
input_data = data.get("inputs", {})
|
|
|
19 |
encoded_images = input_data.get("images")
|
|
|
20 |
if not encoded_images:
|
21 |
return {"captions": [], "error": "No images provided"}
|
22 |
|
23 |
-
texts = input_data.get("texts", ["a photography of"] * len(encoded_images))
|
24 |
|
25 |
try:
|
26 |
byteImgIO = io.BytesIO()
|
@@ -39,12 +42,10 @@ class EndpointHandler():
|
|
39 |
if not raw_images:
|
40 |
print("No valid images found.")
|
41 |
processed_inputs = [
|
42 |
-
self.processor(image,
|
43 |
]
|
44 |
processed_inputs = {
|
45 |
"pixel_values": torch.cat([inp["pixel_values"] for inp in processed_inputs], dim=0).to(device),
|
46 |
-
"input_ids": torch.cat([inp["input_ids"] for inp in processed_inputs], dim=0).to(device),
|
47 |
-
"attention_mask": torch.cat([inp["attention_mask"] for inp in processed_inputs], dim=0).to(device),
|
48 |
"max_new_tokens":40
|
49 |
}
|
50 |
|
@@ -52,6 +53,7 @@ class EndpointHandler():
|
|
52 |
out = self.model.generate(**processed_inputs)
|
53 |
|
54 |
captions = self.processor.batch_decode(out, skip_special_tokens=True)
|
|
|
55 |
return {"captions": captions}
|
56 |
except Exception as e:
|
57 |
print(f"Error during processing: {str(e)}")
|
|
|
15 |
self.model.eval()
|
16 |
|
17 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
18 |
+
print("input data is here------------",data)
|
19 |
input_data = data.get("inputs", {})
|
20 |
+
print("input data is here-2-----------",input_data)
|
21 |
encoded_images = input_data.get("images")
|
22 |
+
print("input encoded_images is here------------",encoded_images)
|
23 |
if not encoded_images:
|
24 |
return {"captions": [], "error": "No images provided"}
|
25 |
|
26 |
+
#texts = input_data.get("texts", ["a photography of"] * len(encoded_images))
|
27 |
|
28 |
try:
|
29 |
byteImgIO = io.BytesIO()
|
|
|
42 |
if not raw_images:
|
43 |
print("No valid images found.")
|
44 |
processed_inputs = [
|
45 |
+
self.processor(image, return_tensors="pt") for image in zip(raw_images)
|
46 |
]
|
47 |
processed_inputs = {
|
48 |
"pixel_values": torch.cat([inp["pixel_values"] for inp in processed_inputs], dim=0).to(device),
|
|
|
|
|
49 |
"max_new_tokens":40
|
50 |
}
|
51 |
|
|
|
53 |
out = self.model.generate(**processed_inputs)
|
54 |
|
55 |
captions = self.processor.batch_decode(out, skip_special_tokens=True)
|
56 |
+
print("caption is here-------",captions)
|
57 |
return {"captions": captions}
|
58 |
except Exception as e:
|
59 |
print(f"Error during processing: {str(e)}")
|