Update handler.py
Browse files- handler.py +12 -11
handler.py
CHANGED
@@ -7,7 +7,12 @@ import io
|
|
7 |
from transformers import BlipForConditionalGeneration, BlipProcessor
|
8 |
import logging
|
9 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
class EndpointHandler():
|
12 |
def __init__(self, path=""):
|
13 |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
@@ -15,19 +20,16 @@ class EndpointHandler():
|
|
15 |
self.model.eval()
|
16 |
|
17 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
18 |
-
logging.
|
19 |
-
logging.
|
20 |
-
logging.warning('--------This is a warning message')
|
21 |
-
logging.error('----------This is an error message')
|
22 |
-
logging.critical('-------------------This is a critical message')
|
23 |
print("000000--",type(data))
|
24 |
-
logging.warning('--------This is a warning message')
|
25 |
print("input data is here------------",data)
|
26 |
input_data = data.get("inputs", {})
|
27 |
logging.warning('------input_data--This is a warning message', input_data)
|
28 |
print("input data is here-2-----------",type(input_data))
|
29 |
encoded_images = input_data.get("images")
|
30 |
-
logging.warning(
|
31 |
print("input encoded_images is here------------",type(encoded_images))
|
32 |
if not encoded_images:
|
33 |
return {"captions": [], "error": "No images provided"}
|
@@ -46,7 +48,7 @@ class EndpointHandler():
|
|
46 |
# Non test code
|
47 |
dataBytesIO = io.BytesIO(byteImg)
|
48 |
raw_images =[Image.open(dataBytesIO)]
|
49 |
-
logging.warning(
|
50 |
# Check if any images were successfully decoded
|
51 |
if not raw_images:
|
52 |
print("No valid images found.")
|
@@ -57,12 +59,11 @@ class EndpointHandler():
|
|
57 |
"pixel_values": torch.cat([inp["pixel_values"] for inp in processed_inputs], dim=0).to(device),
|
58 |
"max_new_tokens":40
|
59 |
}
|
60 |
-
logging.warning('---processed_inputs-----This is a warning message', processed_inputs)
|
61 |
with torch.no_grad():
|
62 |
out = self.model.generate(**processed_inputs)
|
63 |
|
64 |
captions = self.processor.batch_decode(out, skip_special_tokens=True)
|
65 |
-
logging.warning(
|
66 |
print("caption is here-------",captions)
|
67 |
return {"captions": captions}
|
68 |
except Exception as e:
|
|
|
7 |
from transformers import BlipForConditionalGeneration, BlipProcessor
|
8 |
import logging
|
9 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
# Configure logging
|
11 |
+
logging.basicConfig(level=logging.DEBUG)
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(level=logging.ERROR)
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.WARNING)
|
16 |
class EndpointHandler():
|
17 |
def __init__(self, path=""):
|
18 |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
|
|
20 |
self.model.eval()
|
21 |
|
22 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
23 |
+
logging.error(f"----------This is an error message")
|
24 |
+
#logging.critical('-------------------This is a critical message')
|
|
|
|
|
|
|
25 |
print("000000--",type(data))
|
26 |
+
#logging.warning('--------This is a warning message')
|
27 |
print("input data is here------------",data)
|
28 |
input_data = data.get("inputs", {})
|
29 |
logging.warning('------input_data--This is a warning message', input_data)
|
30 |
print("input data is here-2-----------",type(input_data))
|
31 |
encoded_images = input_data.get("images")
|
32 |
+
logging.warning(f"---encoded_images-----This is a warning message {str(encoded_images)}")
|
33 |
print("input encoded_images is here------------",type(encoded_images))
|
34 |
if not encoded_images:
|
35 |
return {"captions": [], "error": "No images provided"}
|
|
|
48 |
# Non test code
|
49 |
dataBytesIO = io.BytesIO(byteImg)
|
50 |
raw_images =[Image.open(dataBytesIO)]
|
51 |
+
logging.warning(f"----raw_images----This is a warning message {str(raw_images)}")
|
52 |
# Check if any images were successfully decoded
|
53 |
if not raw_images:
|
54 |
print("No valid images found.")
|
|
|
59 |
"pixel_values": torch.cat([inp["pixel_values"] for inp in processed_inputs], dim=0).to(device),
|
60 |
"max_new_tokens":40
|
61 |
}
|
|
|
62 |
with torch.no_grad():
|
63 |
out = self.model.generate(**processed_inputs)
|
64 |
|
65 |
captions = self.processor.batch_decode(out, skip_special_tokens=True)
|
66 |
+
logging.warning(f"----captions----This is a warning message {str(captions)}")
|
67 |
print("caption is here-------",captions)
|
68 |
return {"captions": captions}
|
69 |
except Exception as e:
|