import requests from typing import Dict, Any from PIL import Image import torch import base64 import io from transformers import BlipForConditionalGeneration, BlipProcessor import logging from io import BytesIO device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Configure logging logging.basicConfig(level=logging.DEBUG) # Configure logging logging.basicConfig(level=logging.ERROR) # Configure logging logging.basicConfig(level=logging.WARNING) class EndpointHandler(): def __init__(self, path=""): self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device) self.model.eval() def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: logging.error(f"----------This is an error message {str(data)}") input_data = data.get("inputs", {}) logging.warning(f"------input_data-- {str(input_data)}") encoded_images = input_data.get("url") print("url---",encoded_images) # Convert image to bytes # image = Image.open(encoded_images[0]) #url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' # Send a GET request to the URL to get the image data response = requests.get(encoded_images) # Read the image data from the response image_data = BytesIO(response.content) #image_bytes = image.tobytes() # img = Image.open(image_data) #print("testing img--------------", img) #logging.warning(f"---image_bytes----- {str(image_bytes)}") # Encode image bytes as base64 #image_base64 = base64.b64encode(image_bytes).decode("utf-8") #logging.warning(f"---encoded_images----- {str(image_base64)}") # print("000--------", image_base64) if not encoded_images: logging.warning(f"---encoded_images--not provided in if block--- {str(encoded_images)}") return {"captions": [], "error": "No images provided"} try: logging.warning(f"---encoded_images-- provided in try block--- {str(encoded_images)}") byteImgIO = io.BytesIO() byteImg = Image.open(image_data) print("testing img---byteImg-----------", byteImg) byteImg.save(byteImgIO, "PNG") byteImgIO.seek(0) byteImg = byteImgIO.read() # Non test code dataBytesIO = io.BytesIO(byteImg) raw_images =[Image.open(dataBytesIO)] logging.warning(f"----raw_images----0--- {str(raw_images)}") # Check if any images were successfully decoded if not raw_images: print("No valid images found.") processed_inputs = [ self.processor(image, return_tensors="pt") for image in zip(raw_images) ] processed_inputs = { "pixel_values": torch.cat([inp["pixel_values"] for inp in processed_inputs], dim=0).to(device), "max_new_tokens":40 } with torch.no_grad(): out = self.model.generate(**processed_inputs) captions = self.processor.batch_decode(out, skip_special_tokens=True) logging.warning(f"----captions---- {str(captions)}") print("caption is here-------",captions) return {"captions": captions} except Exception as e: print(f"Error during processing: {str(e)}") logging.error(f"Error during processing: ----------------{str(e)}") return {"captions": [], "error": str(e)}