|
from typing import Dict, Any |
|
import logging |
|
import torch |
|
import soundfile as sf |
|
from transformers import AutoTokenizer, AutoModelForTextToWaveform |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logging.basicConfig(level=logging.ERROR) |
|
|
|
logging.basicConfig(level=logging.WARNING) |
|
|
|
|
|
|
|
class CustomHandler: |
|
def __init__(self): |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") |
|
self.model= AutoModelForTextToWaveform.from_pretrained("facebook/mms-tts-eng") |
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
|
|
logging.warning(f"------input_data-- {str(data)}") |
|
payload = str(data) |
|
logging.warning(f"payload----{str(payload)}") |
|
|
|
inputs = self.tokenizer(payload, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = self.model(**inputs) |
|
|
|
|
|
sf.write("StoryAudio.wav", outputs["waveform"][0].numpy(), self.model.config.sampling_rate) |
|
|
|
return 'StoryAudio.wav' |
|
|
|
|
|
|
|
|