Delete handlerForAudio.py
Browse files- handlerForAudio.py +0 -40
handlerForAudio.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
from typing import Dict, Any
|
2 |
-
from textToStoryGeneration import *
|
3 |
-
import logging
|
4 |
-
import torch
|
5 |
-
import soundfile as sf
|
6 |
-
from transformers import AutoTokenizer, AutoModelForTextToWaveform
|
7 |
-
|
8 |
-
# Configure logging
|
9 |
-
logging.basicConfig(level=logging.DEBUG)
|
10 |
-
# Configure logging
|
11 |
-
logging.basicConfig(level=logging.ERROR)
|
12 |
-
# Configure logging
|
13 |
-
logging.basicConfig(level=logging.WARNING)
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
class CustomHandler:
|
18 |
-
def __init__(self):
|
19 |
-
|
20 |
-
self.tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
21 |
-
self.model= AutoModelForTextToWaveform.from_pretrained("facebook/mms-tts-eng")
|
22 |
-
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
23 |
-
# Prepare the payload with input data
|
24 |
-
logging.warning(f"------input_data-- {str(data)}")
|
25 |
-
payload = str(data)
|
26 |
-
logging.warning(f"payload----{str(payload)}")
|
27 |
-
# Set headers with API token
|
28 |
-
inputs = self.tokenizer(payload, return_tensors="pt")
|
29 |
-
|
30 |
-
# Generate the waveform from the input text
|
31 |
-
with torch.no_grad():
|
32 |
-
outputs = self.model(**inputs)
|
33 |
-
|
34 |
-
# Save the audio to a file
|
35 |
-
sf.write("StoryAudio.wav", outputs["waveform"][0].numpy(), self.model.config.sampling_rate)
|
36 |
-
|
37 |
-
return 'StoryAudio.wav'
|
38 |
-
# Check if the request was successful
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|