File size: 8,084 Bytes
5f31079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
base_model: https://huggingface.co/beomi/llama-2-ko-70b
inference: false
language:
- en
- ko
model_name: Llama 2 7B Chat
model_type: llama
pipeline_tag: text-generation
quantized_by: kuotient
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- kollama
- llama-2-ko
- gptq
license: cc-by-nc-sa-4.0
---
# WIP
## Llama-2-Ko-GPTQ
<!-- README_GPTQ.md-provided-files start -->
## Provided files and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
<details>
<summary>Explanation of GPTQ parameters</summary>
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
</details>
# Original model card: Llama 2 ko 70b
> ๐ง Note: this repo is under construction ๐ง
# **Llama-2-Ko** ๐ฆ๐ฐ๐ท
Llama-2-Ko serves as an advanced iteration of Llama 2, benefiting from an expanded vocabulary and the inclusion of a Korean corpus in its further pretraining. Just like its predecessor, Llama-2-Ko operates within the broad range of generative text models that stretch from 7 billion to 70 billion parameters. This repository focuses on the **70B** pretrained version, which is tailored to fit the Hugging Face Transformers format. For access to the other models, feel free to consult the index provided below.
## Model Details
**Model Developers** Junbum Lee (Beomi)
**Variations** Llama-2-Ko will come in a range of parameter sizes โ 7B, 13B, and 70B โ as well as pretrained and fine-tuned variations.
**Input** Models input text only.
**Output** Models generate text only.
## Usage
**Use with 8bit inference**
- Requires > 74GB vram (compatible with 4x RTX 3090/4090 or 1x A100/H100 80G or 2x RTX 6000 ada/A6000 48G)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_8bit = AutoModelForCausalLM.from_pretrained(
"beomi/llama-2-ko-70b",
load_in_8bit=True,
device_map="auto",
)
tk = AutoTokenizer.from_pretrained('beomi/llama-2-ko-70b')
pipe = pipeline('text-generation', model=model_8bit, tokenizer=tk)
def gen(x):
gended = pipe(f"### Title: {x}\n\n### Contents:", # Since it this model is NOT finetuned with Instruction dataset, it is NOT optimal prompt.
max_new_tokens=300,
top_p=0.95,
do_sample=True,
)[0]['generated_text']
print(len(gended))
print(gended)
```
**Use with bf16 inference**
- Requires > 150GB vram (compatible with 8x RTX 3090/4090 or 2x A100/H100 80G or 4x RTX 6000 ada/A6000 48G)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model = AutoModelForCausalLM.from_pretrained(
"beomi/llama-2-ko-70b",
device_map="auto",
)
tk = AutoTokenizer.from_pretrained('beomi/llama-2-ko-70b')
pipe = pipeline('text-generation', model=model, tokenizer=tk)
def gen(x):
gended = pipe(f"### Title: {x}\n\n### Contents:", # Since it this model is NOT finetuned with Instruction dataset, it is NOT optimal prompt.
max_new_tokens=300,
top_p=0.95,
do_sample=True,
)[0]['generated_text']
print(len(gended))
print(gended)
```
**Model Architecture**
Llama-2-Ko is an auto-regressive language model that uses an optimized transformer architecture based on Llama-2.
||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
|Llama-2-Ko 70B|*A new mix of Korean online data*|70B|4k|โ
|>20B|1e<sup>-5</sup>|
*Plan to train upto 300B tokens
**Vocab Expansion**
| Model Name | Vocabulary Size | Description |
| --- | --- | --- |
| Original Llama-2 | 32000 | Sentencepiece BPE |
| **Expanded Llama-2-Ko** | 46592 | Sentencepiece BPE. Added Korean vocab and merges |
*Note: Llama-2-Ko 70B uses `46592` not `46336`(7B), will update new 7B model soon.
**Tokenizing "์๋
ํ์ธ์, ์ค๋์ ๋ ์จ๊ฐ ์ข๋ค์. ใ
ใ
"**
| Model | Tokens |
| --- | --- |
| Llama-2 | `['โ', '์', '<0xEB>', '<0x85>', '<0x95>', 'ํ', '์ธ', '์', ',', 'โ', '์ค', '<0xEB>', '<0x8A>', '<0x98>', '์', 'โ', '<0xEB>', '<0x82>', '<0xA0>', '์จ', '๊ฐ', 'โ', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', '์', '.', 'โ', '<0xE3>', '<0x85>', '<0x8E>', '<0xE3>', '<0x85>', '<0x8E>']` |
| Llama-2-Ko *70B | `['โ์๋
', 'ํ์ธ์', ',', 'โ์ค๋์', 'โ๋ ', '์จ๊ฐ', 'โ์ข๋ค์', '.', 'โ', 'ใ
', 'ใ
']` |
**Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models"**
| Model | Tokens |
| --- | --- |
| Llama-2 | `['โL', 'l', 'ama', 'โ', '2', ':', 'โOpen', 'โFoundation', 'โand', 'โFine', '-', 'T', 'un', 'ed', 'โCh', 'at', 'โMod', 'els']` |
| Llama-2-Ko 70B | `['โL', 'l', 'ama', 'โ', '2', ':', 'โOpen', 'โFoundation', 'โand', 'โFine', '-', 'T', 'un', 'ed', 'โCh', 'at', 'โMod', 'els']` |
# **Model Benchmark**
## LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
### TBD
## Note for oobabooga/text-generation-webui
Remove `ValueError` at `load_tokenizer` function(line 109 or near), in `modules/models.py`.
```python
diff --git a/modules/models.py b/modules/models.py
index 232d5fa..de5b7a0 100644
--- a/modules/models.py
+++ b/modules/models.py
@@ -106,7 +106,7 @@ def load_tokenizer(model_name, model):
trust_remote_code=shared.args.trust_remote_code,
use_fast=False
)
- except ValueError:
+ except:
tokenizer = AutoTokenizer.from_pretrained(
path_to_model,
trust_remote_code=shared.args.trust_remote_code,
```
Since Llama-2-Ko uses FastTokenizer provided by HF tokenizers NOT sentencepiece package,
it is required to use `use_fast=True` option when initialize tokenizer.
Apple Sillicon does not support BF16 computing, use CPU instead. (BF16 is supported when using NVIDIA GPU)
## LICENSE
- Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, under LLAMA 2 COMMUNITY LICENSE AGREEMENT
- Full License available at: [https://huggingface.co/beomi/llama-2-ko-70b/blob/main/LICENSE](https://huggingface.co/beomi/llama-2-ko-70b/blob/main/LICENSE)
- For Commercial Usage, contact Author.
## Citation
```
@misc {l._junbum_2023,
author = { {L. Junbum} },
title = { llama-2-ko-70b },
year = 2023,
url = { https://huggingface.co/beomi/llama-2-ko-70b },
doi = { 10.57967/hf/1130 },
publisher = { Hugging Face }
}
```
|