--- base_model: https://huggingface.co/beomi/llama-2-ko-70b inference: false language: - en - ko model_name: Llama 2 7B Chat model_type: llama pipeline_tag: text-generation quantized_by: kuotient tags: - facebook - meta - pytorch - llama - llama-2 - kollama - llama-2-ko - gptq license: cc-by-nc-sa-4.0 --- # WIP ## Llama-2-Ko-GPTQ ## Provided files and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
Explanation of GPTQ parameters - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
# Original model card: Llama 2 ko 70b > ๐Ÿšง Note: this repo is under construction ๐Ÿšง # **Llama-2-Ko** ๐Ÿฆ™๐Ÿ‡ฐ๐Ÿ‡ท Llama-2-Ko serves as an advanced iteration of Llama 2, benefiting from an expanded vocabulary and the inclusion of a Korean corpus in its further pretraining. Just like its predecessor, Llama-2-Ko operates within the broad range of generative text models that stretch from 7 billion to 70 billion parameters. This repository focuses on the **70B** pretrained version, which is tailored to fit the Hugging Face Transformers format. For access to the other models, feel free to consult the index provided below. ## Model Details **Model Developers** Junbum Lee (Beomi) **Variations** Llama-2-Ko will come in a range of parameter sizes โ€” 7B, 13B, and 70B โ€” as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. ## Usage **Use with 8bit inference** - Requires > 74GB vram (compatible with 4x RTX 3090/4090 or 1x A100/H100 80G or 2x RTX 6000 ada/A6000 48G) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_8bit = AutoModelForCausalLM.from_pretrained( "beomi/llama-2-ko-70b", load_in_8bit=True, device_map="auto", ) tk = AutoTokenizer.from_pretrained('beomi/llama-2-ko-70b') pipe = pipeline('text-generation', model=model_8bit, tokenizer=tk) def gen(x): gended = pipe(f"### Title: {x}\n\n### Contents:", # Since it this model is NOT finetuned with Instruction dataset, it is NOT optimal prompt. max_new_tokens=300, top_p=0.95, do_sample=True, )[0]['generated_text'] print(len(gended)) print(gended) ``` **Use with bf16 inference** - Requires > 150GB vram (compatible with 8x RTX 3090/4090 or 2x A100/H100 80G or 4x RTX 6000 ada/A6000 48G) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model = AutoModelForCausalLM.from_pretrained( "beomi/llama-2-ko-70b", device_map="auto", ) tk = AutoTokenizer.from_pretrained('beomi/llama-2-ko-70b') pipe = pipeline('text-generation', model=model, tokenizer=tk) def gen(x): gended = pipe(f"### Title: {x}\n\n### Contents:", # Since it this model is NOT finetuned with Instruction dataset, it is NOT optimal prompt. max_new_tokens=300, top_p=0.95, do_sample=True, )[0]['generated_text'] print(len(gended)) print(gended) ``` **Model Architecture** Llama-2-Ko is an auto-regressive language model that uses an optimized transformer architecture based on Llama-2. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama-2-Ko 70B|*A new mix of Korean online data*|70B|4k|โœ…|>20B|1e-5| *Plan to train upto 300B tokens **Vocab Expansion** | Model Name | Vocabulary Size | Description | | --- | --- | --- | | Original Llama-2 | 32000 | Sentencepiece BPE | | **Expanded Llama-2-Ko** | 46592 | Sentencepiece BPE. Added Korean vocab and merges | *Note: Llama-2-Ko 70B uses `46592` not `46336`(7B), will update new 7B model soon. **Tokenizing "์•ˆ๋…•ํ•˜์„ธ์š”, ์˜ค๋Š˜์€ ๋‚ ์”จ๊ฐ€ ์ข‹๋„ค์š”. ใ…Žใ…Ž"** | Model | Tokens | | --- | --- | | Llama-2 | `['โ–', '์•ˆ', '<0xEB>', '<0x85>', '<0x95>', 'ํ•˜', '์„ธ', '์š”', ',', 'โ–', '์˜ค', '<0xEB>', '<0x8A>', '<0x98>', '์€', 'โ–', '<0xEB>', '<0x82>', '<0xA0>', '์”จ', '๊ฐ€', 'โ–', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', '์š”', '.', 'โ–', '<0xE3>', '<0x85>', '<0x8E>', '<0xE3>', '<0x85>', '<0x8E>']` | | Llama-2-Ko *70B | `['โ–์•ˆ๋…•', 'ํ•˜์„ธ์š”', ',', 'โ–์˜ค๋Š˜์€', 'โ–๋‚ ', '์”จ๊ฐ€', 'โ–์ข‹๋„ค์š”', '.', 'โ–', 'ใ…Ž', 'ใ…Ž']` | **Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models"** | Model | Tokens | | --- | --- | | Llama-2 | `['โ–L', 'l', 'ama', 'โ–', '2', ':', 'โ–Open', 'โ–Foundation', 'โ–and', 'โ–Fine', '-', 'T', 'un', 'ed', 'โ–Ch', 'at', 'โ–Mod', 'els']` | | Llama-2-Ko 70B | `['โ–L', 'l', 'ama', 'โ–', '2', ':', 'โ–Open', 'โ–Foundation', 'โ–and', 'โ–Fine', '-', 'T', 'un', 'ed', 'โ–Ch', 'at', 'โ–Mod', 'els']` | # **Model Benchmark** ## LM Eval Harness - Korean (polyglot branch) - Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot ### TBD ## Note for oobabooga/text-generation-webui Remove `ValueError` at `load_tokenizer` function(line 109 or near), in `modules/models.py`. ```python diff --git a/modules/models.py b/modules/models.py index 232d5fa..de5b7a0 100644 --- a/modules/models.py +++ b/modules/models.py @@ -106,7 +106,7 @@ def load_tokenizer(model_name, model): trust_remote_code=shared.args.trust_remote_code, use_fast=False ) - except ValueError: + except: tokenizer = AutoTokenizer.from_pretrained( path_to_model, trust_remote_code=shared.args.trust_remote_code, ``` Since Llama-2-Ko uses FastTokenizer provided by HF tokenizers NOT sentencepiece package, it is required to use `use_fast=True` option when initialize tokenizer. Apple Sillicon does not support BF16 computing, use CPU instead. (BF16 is supported when using NVIDIA GPU) ## LICENSE - Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, under LLAMA 2 COMMUNITY LICENSE AGREEMENT - Full License available at: [https://huggingface.co/beomi/llama-2-ko-70b/blob/main/LICENSE](https://huggingface.co/beomi/llama-2-ko-70b/blob/main/LICENSE) - For Commercial Usage, contact Author. ## Citation ``` @misc {l._junbum_2023, author = { {L. Junbum} }, title = { llama-2-ko-70b }, year = 2023, url = { https://huggingface.co/beomi/llama-2-ko-70b }, doi = { 10.57967/hf/1130 }, publisher = { Hugging Face } } ```