Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.94 +/- 14.35
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc218c29160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc218c291f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc218c29280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc218c29310>", "_build": "<function ActorCriticPolicy._build at 0x7fc218c293a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc218c29430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc218c294c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc218c29550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc218c295e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc218c29670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc218c29700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc218c23690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673327531570248012, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJNJFD4loaA/Il8MP5tZA7/H2Gg+/V2lPgAAAAAAAAAAU7Ykvq6qirzDUZC7IYreuVZ29T123vc6AACAPwAAgD9mYAm8DgKPPVb/Rb1Rm0G+U8s6vXZXQ7wAAAAAAAAAAFPzgr6QqBE/lkcPPN1Q0r6+esG9005uPQAAAAAAAAAATRCEvdeLNbtwKjc+H56VPN0ciLy1XoA9AAAAAAAAgD/N3pW8iHe5Pyvk7L2uEeu9AgqePNP/TT0AAAAAAAAAAJrVZjx8Uq0/FssYPjAgxr5L17o8cq+OPQAAAAAAAAAAWq1HPuhFlbxTtG46MbOouFXhAb7bEpW5AACAPwAAgD9A3w0+jyksvIAS5bs1bio8pbqSvVEhEz0AAIA/AACAP/PtmD6DB08/69RmPgaUCL/8FHg+gai1vQAAAAAAAAAA89/lPVKY9zj6iSG+3orHvF7hDzxLP7C9AACAPwAAgD+NkI09JQMMP5K0Yz3Bis++5GxePVbndTsAAAAAAAAAAM3IUD2kbUO7bRGLOQSUizw/6ZK8I3VwPQAAgD8AAIA/ZqbxukWNnjyfzom9JOLsvVc0Kb2Dq2a9AAAAAAAAAACAEXE+j+sRPTCIFbrmqLS4VPenPvKJGTgAAIA/AACAPwBLIL4c63i86F8Yu9keXbl/k9I9rX1ROgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVORAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFaqbiz9ubkCUhpRSlIwBbJRL0owBdJRHQKagEIldC3R1fZQoaAZoCWgPQwgxs89jlExgQJSGlFKUaBVN6ANoFkdApqB2df9gnnV9lChoBmgJaA9DCDWbx2HwDnFAlIaUUpRoFUvZaBZHQKagolruYyB1fZQoaAZoCWgPQwjW/s726NhdQJSGlFKUaBVN6ANoFkdApqD2jynUD3V9lChoBmgJaA9DCDtu+N309nJAlIaUUpRoFU0FAWgWR0CmoP4sd1dPdX2UKGgGaAloD0MIX5m36vqccECUhpRSlGgVS+9oFkdApqHq1w5vL3V9lChoBmgJaA9DCMBZSpZTlnFAlIaUUpRoFU00AWgWR0CmofpxvNu+dX2UKGgGaAloD0MI1J0nnjPuaECUhpRSlGgVTRwBaBZHQKaiNRqGlAN1fZQoaAZoCWgPQwgfLjnuFBFwQJSGlFKUaBVL5mgWR0CmoqHXmNipdX2UKGgGaAloD0MImWVPAhtXckCUhpRSlGgVS99oFkdApqK2gvlEJHV9lChoBmgJaA9DCIyiBz4GKHFAlIaUUpRoFU0AAWgWR0Cmou0VrRBvdX2UKGgGaAloD0MIWmYRiq1dbkCUhpRSlGgVS+BoFkdApqMplrdnCnV9lChoBmgJaA9DCBsTYi4pt3FAlIaUUpRoFUvcaBZHQKajQmwaBI51fZQoaAZoCWgPQwhoeLMGr55wQJSGlFKUaBVL4WgWR0Cmo34XfqHHdX2UKGgGaAloD0MI1sVtNEA7cECUhpRSlGgVS9poFkdApqReIoE0SHV9lChoBmgJaA9DCHaNlgM91EdAlIaUUpRoFUudaBZHQKakXDtw71Z1fZQoaAZoCWgPQwhzgjY5/DZtQJSGlFKUaBVNEwFoFkdApqS2mYSg5HV9lChoBmgJaA9DCCi5wyay2nFAlIaUUpRoFUvraBZHQKaltUI9kjJ1fZQoaAZoCWgPQwh8KNGSR69wQJSGlFKUaBVLxWgWR0Cmpcts3yZsdX2UKGgGaAloD0MIKeeLvZfDb0CUhpRSlGgVS+hoFkdApqXreoDPnnV9lChoBmgJaA9DCIrJG2Dmt0lAlIaUUpRoFUveaBZHQKamURBeHBV1fZQoaAZoCWgPQwht409UNkxwQJSGlFKUaBVL4GgWR0Cmppknb7CSdX2UKGgGaAloD0MI+fNtwdL/bkCUhpRSlGgVTUYCaBZHQKam60svqTt1fZQoaAZoCWgPQwjGi4Uh8rlxQJSGlFKUaBVL0WgWR0Cmpve+VTrFdX2UKGgGaAloD0MI4X8r2bHFQUCUhpRSlGgVS6JoFkdApqcWqvNeMXV9lChoBmgJaA9DCG3lJf+TVXBAlIaUUpRoFUvraBZHQKanIGGmDUV1fZQoaAZoCWgPQwjoMjUJXqdwQJSGlFKUaBVL+mgWR0Cmp0MLv1DjdX2UKGgGaAloD0MIILOz6F0RdECUhpRSlGgVS+loFkdApqgTmjj7ynV9lChoBmgJaA9DCFlMbD4ul3BAlIaUUpRoFUvmaBZHQKaoXg1FYuF1fZQoaAZoCWgPQwgyAb9G0khxQJSGlFKUaBVLxmgWR0CmqPmk30f6dX2UKGgGaAloD0MIbVhTWVR7cUCUhpRSlGgVS9VoFkdApqkZVjqfOHV9lChoBmgJaA9DCIaqmEq/iG9AlIaUUpRoFUvoaBZHQKapVC4z7/J1fZQoaAZoCWgPQwgVdHtJY71xQJSGlFKUaBVLtWgWR0Cmqa9Qfp2VdX2UKGgGaAloD0MIK6Im+rx8cUCUhpRSlGgVS9xoFkdApqn2h24d63V9lChoBmgJaA9DCKTGhJgLlXFAlIaUUpRoFUvIaBZHQKaqLF6Rhc91fZQoaAZoCWgPQwhHHogsEhtyQJSGlFKUaBVL1WgWR0CmqoNGEwnIdX2UKGgGaAloD0MITz+oi5Rab0CUhpRSlGgVS+RoFkdApqqS3d9DyHV9lChoBmgJaA9DCOdvQiGCbnJAlIaUUpRoFU0YAWgWR0Cmqqq8+RozdX2UKGgGaAloD0MI2IFzRpQ+cUCUhpRSlGgVS/poFkdApqwGahHsknV9lChoBmgJaA9DCNC1L6AXcnFAlIaUUpRoFUvwaBZHQKasLUKiPAB1fZQoaAZoCWgPQwi45/nTRsRdQJSGlFKUaBVN6ANoFkdApqxyvFFUhnV9lChoBmgJaA9DCMFWCRYHvW5AlIaUUpRoFUvcaBZHQKasnrTpgTh1fZQoaAZoCWgPQwhV3SObq/hbQJSGlFKUaBVN6ANoFkdApqysawUxmHV9lChoBmgJaA9DCGYyHM9ndm9AlIaUUpRoFUvxaBZHQKatJrE9+w11fZQoaAZoCWgPQwg4ZW6+kfBuQJSGlFKUaBVLzWgWR0CmrTOtGNJfdX2UKGgGaAloD0MII/Qz9bqEcECUhpRSlGgVS/poFkdApq2ddcB2fXV9lChoBmgJaA9DCOY+OQoQGGxAlIaUUpRoFUvbaBZHQKat7Eit7rt1fZQoaAZoCWgPQwj1nsppT+ltQJSGlFKUaBVL9mgWR0CmrgFqzqrzdX2UKGgGaAloD0MI0m2JXHB1bUCUhpRSlGgVTQABaBZHQKauhgrH2h91fZQoaAZoCWgPQwg5Kcx7XLxxQJSGlFKUaBVL+2gWR0Cmrot1ZDArdX2UKGgGaAloD0MIw5rKonAOcUCUhpRSlGgVS+loFkdApq/Bha1Ti3V9lChoBmgJaA9DCDW1bK0v9HJAlIaUUpRoFUvkaBZHQKav8d3jdYZ1fZQoaAZoCWgPQwjYmxiS0xhwQJSGlFKUaBVL5GgWR0CmsC7OeJ53dX2UKGgGaAloD0MIxOv6BfsUcECUhpRSlGgVS+loFkdAprA2Yx+KCXV9lChoBmgJaA9DCILK+PeZDWJAlIaUUpRoFU3oA2gWR0CmsE9uHerNdX2UKGgGaAloD0MIUOEIUinoSkCUhpRSlGgVS75oFkdAprCOtlqagHV9lChoBmgJaA9DCObMdoX+FnBAlIaUUpRoFUveaBZHQKawk0rK/211fZQoaAZoCWgPQwiZRpOLsdZlQJSGlFKUaBVN6ANoFkdAprCg6r/823V9lChoBmgJaA9DCBXikXh5FXJAlIaUUpRoFUvZaBZHQKaxLqC6H0t1fZQoaAZoCWgPQwiG4/kM6IRxQJSGlFKUaBVL9WgWR0CmskW07bL2dX2UKGgGaAloD0MICoFc4khxcUCUhpRSlGgVTVoBaBZHQKayczposZp1fZQoaAZoCWgPQwjlYgysY9ZpQJSGlFKUaBVNLwFoFkdAprKdoi9qUXV9lChoBmgJaA9DCHedDflnnkFAlIaUUpRoFUvFaBZHQKazJ54W1tx1fZQoaAZoCWgPQwgCSG3iZHxuQJSGlFKUaBVL5GgWR0Cms3JXIU8FdX2UKGgGaAloD0MILsiW5atNcUCUhpRSlGgVS9loFkdAprOHbdrO7nV9lChoBmgJaA9DCK2+uiqQf3JAlIaUUpRoFU0OAWgWR0Cms+4Wk8A8dX2UKGgGaAloD0MIh8Woay0ockCUhpRSlGgVS+5oFkdAprQ7m4iHI3V9lChoBmgJaA9DCBkfZi9b0m9AlIaUUpRoFUvzaBZHQKa0XkXk5p91fZQoaAZoCWgPQwirQC0Gz0RxQJSGlFKUaBVNVQFoFkdAprWbFuNxVHV9lChoBmgJaA9DCPD3i9kSHnFAlIaUUpRoFUvRaBZHQKa1pl6qsEJ1fZQoaAZoCWgPQwhtOZfiKlxyQJSGlFKUaBVNSwFoFkdAprW70Bfa6HV9lChoBmgJaA9DCF3fh4OE8nFAlIaUUpRoFU0wAWgWR0Cmtg4qoZQ6dX2UKGgGaAloD0MIQpPEkrK3ckCUhpRSlGgVS+FoFkdAprY+FWXC0nV9lChoBmgJaA9DCBWQ9j9AHGJAlIaUUpRoFU3oA2gWR0Cmtm+pfhMrdX2UKGgGaAloD0MI6IL6ljn+cECUhpRSlGgVS9VoFkdApraO2NNrTHV9lChoBmgJaA9DCPM8uDsrUnFAlIaUUpRoFUvDaBZHQKa2nTAnDzl1fZQoaAZoCWgPQwik/KTa51hxQJSGlFKUaBVL7GgWR0Cmtxj0+TvBdX2UKGgGaAloD0MIjdXm/9WNb0CUhpRSlGgVS9hoFkdApreMgMc6vXV9lChoBmgJaA9DCBhA+FCiiG9AlIaUUpRoFUvzaBZHQKa3p4yGi6B1fZQoaAZoCWgPQwjjjcwjf5BuQJSGlFKUaBVL2GgWR0Cmt66WHDaXdX2UKGgGaAloD0MIdFyN7ErvZECUhpRSlGgVTegDaBZHQKa4Y8U21lZ1fZQoaAZoCWgPQwg09E9wMZhvQJSGlFKUaBVL12gWR0CmuNIeHSF5dX2UKGgGaAloD0MIem8MAYBScECUhpRSlGgVS/VoFkdAprkyh6By0nV9lChoBmgJaA9DCKhy2lNydm5AlIaUUpRoFUvbaBZHQKa5XMi8nNR1fZQoaAZoCWgPQwjAsWfPpSVxQJSGlFKUaBVL2mgWR0CmuYxBeHBUdX2UKGgGaAloD0MIumkzTkOUb0CUhpRSlGgVS+1oFkdAproLho/RmnV9lChoBmgJaA9DCAUabOr82nBAlIaUUpRoFUv8aBZHQKa6Np8neBR1fZQoaAZoCWgPQwg6rdugdnxuQJSGlFKUaBVL32gWR0CmumCFK02MdX2UKGgGaAloD0MIttlYiXnBcECUhpRSlGgVS/FoFkdAprsfSc9W63V9lChoBmgJaA9DCFuVRPbBO3FAlIaUUpRoFU17AWgWR0CmuzyGi5/cdX2UKGgGaAloD0MIYymSrwTKYUCUhpRSlGgVTegDaBZHQKa7ThsImgJ1fZQoaAZoCWgPQwj4+e/B6xtxQJSGlFKUaBVNBgFoFkdApruXzjFQ23V9lChoBmgJaA9DCLTJ4ZNOvnBAlIaUUpRoFU0JAWgWR0Cmu5xigCfZdX2UKGgGaAloD0MIeomxTP+YcECUhpRSlGgVS9VoFkdAprujNr0rb3V9lChoBmgJaA9DCAPPvYdLn3BAlIaUUpRoFUvRaBZHQKa8yWJrLyN1fZQoaAZoCWgPQwhtUzwuqvVwQJSGlFKUaBVL7GgWR0CmvQp/oaDPdX2UKGgGaAloD0MI/kgRGVbicUCUhpRSlGgVTQQBaBZHQKa9QG21D0F1fZQoaAZoCWgPQwi31awzftBwQJSGlFKUaBVL7mgWR0Cmvc9KNAC5dX2UKGgGaAloD0MIJAot636rYUCUhpRSlGgVTegDaBZHQKa97XgccVB1fZQoaAZoCWgPQwgj3GRUGfZtQJSGlFKUaBVL52gWR0CmvhBuGbkPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9750f114b0e422a89fc90ffdc0f8c4580560b9d9a1051090a62db49d064ddf8
|
3 |
+
size 147121
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc218c29160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc218c291f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc218c29280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc218c29310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc218c293a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc218c29430>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc218c294c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc218c29550>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc218c295e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc218c29670>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc218c29700>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc218c23690>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673327531570248012,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJNJFD4loaA/Il8MP5tZA7/H2Gg+/V2lPgAAAAAAAAAAU7Ykvq6qirzDUZC7IYreuVZ29T123vc6AACAPwAAgD9mYAm8DgKPPVb/Rb1Rm0G+U8s6vXZXQ7wAAAAAAAAAAFPzgr6QqBE/lkcPPN1Q0r6+esG9005uPQAAAAAAAAAATRCEvdeLNbtwKjc+H56VPN0ciLy1XoA9AAAAAAAAgD/N3pW8iHe5Pyvk7L2uEeu9AgqePNP/TT0AAAAAAAAAAJrVZjx8Uq0/FssYPjAgxr5L17o8cq+OPQAAAAAAAAAAWq1HPuhFlbxTtG46MbOouFXhAb7bEpW5AACAPwAAgD9A3w0+jyksvIAS5bs1bio8pbqSvVEhEz0AAIA/AACAP/PtmD6DB08/69RmPgaUCL/8FHg+gai1vQAAAAAAAAAA89/lPVKY9zj6iSG+3orHvF7hDzxLP7C9AACAPwAAgD+NkI09JQMMP5K0Yz3Bis++5GxePVbndTsAAAAAAAAAAM3IUD2kbUO7bRGLOQSUizw/6ZK8I3VwPQAAgD8AAIA/ZqbxukWNnjyfzom9JOLsvVc0Kb2Dq2a9AAAAAAAAAACAEXE+j+sRPTCIFbrmqLS4VPenPvKJGTgAAIA/AACAPwBLIL4c63i86F8Yu9keXbl/k9I9rX1ROgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVORAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFaqbiz9ubkCUhpRSlIwBbJRL0owBdJRHQKagEIldC3R1fZQoaAZoCWgPQwgxs89jlExgQJSGlFKUaBVN6ANoFkdApqB2df9gnnV9lChoBmgJaA9DCDWbx2HwDnFAlIaUUpRoFUvZaBZHQKagolruYyB1fZQoaAZoCWgPQwjW/s726NhdQJSGlFKUaBVN6ANoFkdApqD2jynUD3V9lChoBmgJaA9DCDtu+N309nJAlIaUUpRoFU0FAWgWR0CmoP4sd1dPdX2UKGgGaAloD0MIX5m36vqccECUhpRSlGgVS+9oFkdApqHq1w5vL3V9lChoBmgJaA9DCMBZSpZTlnFAlIaUUpRoFU00AWgWR0CmofpxvNu+dX2UKGgGaAloD0MI1J0nnjPuaECUhpRSlGgVTRwBaBZHQKaiNRqGlAN1fZQoaAZoCWgPQwgfLjnuFBFwQJSGlFKUaBVL5mgWR0CmoqHXmNipdX2UKGgGaAloD0MImWVPAhtXckCUhpRSlGgVS99oFkdApqK2gvlEJHV9lChoBmgJaA9DCIyiBz4GKHFAlIaUUpRoFU0AAWgWR0Cmou0VrRBvdX2UKGgGaAloD0MIWmYRiq1dbkCUhpRSlGgVS+BoFkdApqMplrdnCnV9lChoBmgJaA9DCBsTYi4pt3FAlIaUUpRoFUvcaBZHQKajQmwaBI51fZQoaAZoCWgPQwhoeLMGr55wQJSGlFKUaBVL4WgWR0Cmo34XfqHHdX2UKGgGaAloD0MI1sVtNEA7cECUhpRSlGgVS9poFkdApqReIoE0SHV9lChoBmgJaA9DCHaNlgM91EdAlIaUUpRoFUudaBZHQKakXDtw71Z1fZQoaAZoCWgPQwhzgjY5/DZtQJSGlFKUaBVNEwFoFkdApqS2mYSg5HV9lChoBmgJaA9DCCi5wyay2nFAlIaUUpRoFUvraBZHQKaltUI9kjJ1fZQoaAZoCWgPQwh8KNGSR69wQJSGlFKUaBVLxWgWR0Cmpcts3yZsdX2UKGgGaAloD0MIKeeLvZfDb0CUhpRSlGgVS+hoFkdApqXreoDPnnV9lChoBmgJaA9DCIrJG2Dmt0lAlIaUUpRoFUveaBZHQKamURBeHBV1fZQoaAZoCWgPQwht409UNkxwQJSGlFKUaBVL4GgWR0Cmppknb7CSdX2UKGgGaAloD0MI+fNtwdL/bkCUhpRSlGgVTUYCaBZHQKam60svqTt1fZQoaAZoCWgPQwjGi4Uh8rlxQJSGlFKUaBVL0WgWR0Cmpve+VTrFdX2UKGgGaAloD0MI4X8r2bHFQUCUhpRSlGgVS6JoFkdApqcWqvNeMXV9lChoBmgJaA9DCG3lJf+TVXBAlIaUUpRoFUvraBZHQKanIGGmDUV1fZQoaAZoCWgPQwjoMjUJXqdwQJSGlFKUaBVL+mgWR0Cmp0MLv1DjdX2UKGgGaAloD0MIILOz6F0RdECUhpRSlGgVS+loFkdApqgTmjj7ynV9lChoBmgJaA9DCFlMbD4ul3BAlIaUUpRoFUvmaBZHQKaoXg1FYuF1fZQoaAZoCWgPQwgyAb9G0khxQJSGlFKUaBVLxmgWR0CmqPmk30f6dX2UKGgGaAloD0MIbVhTWVR7cUCUhpRSlGgVS9VoFkdApqkZVjqfOHV9lChoBmgJaA9DCIaqmEq/iG9AlIaUUpRoFUvoaBZHQKapVC4z7/J1fZQoaAZoCWgPQwgVdHtJY71xQJSGlFKUaBVLtWgWR0Cmqa9Qfp2VdX2UKGgGaAloD0MIK6Im+rx8cUCUhpRSlGgVS9xoFkdApqn2h24d63V9lChoBmgJaA9DCKTGhJgLlXFAlIaUUpRoFUvIaBZHQKaqLF6Rhc91fZQoaAZoCWgPQwhHHogsEhtyQJSGlFKUaBVL1WgWR0CmqoNGEwnIdX2UKGgGaAloD0MITz+oi5Rab0CUhpRSlGgVS+RoFkdApqqS3d9DyHV9lChoBmgJaA9DCOdvQiGCbnJAlIaUUpRoFU0YAWgWR0Cmqqq8+RozdX2UKGgGaAloD0MI2IFzRpQ+cUCUhpRSlGgVS/poFkdApqwGahHsknV9lChoBmgJaA9DCNC1L6AXcnFAlIaUUpRoFUvwaBZHQKasLUKiPAB1fZQoaAZoCWgPQwi45/nTRsRdQJSGlFKUaBVN6ANoFkdApqxyvFFUhnV9lChoBmgJaA9DCMFWCRYHvW5AlIaUUpRoFUvcaBZHQKasnrTpgTh1fZQoaAZoCWgPQwhV3SObq/hbQJSGlFKUaBVN6ANoFkdApqysawUxmHV9lChoBmgJaA9DCGYyHM9ndm9AlIaUUpRoFUvxaBZHQKatJrE9+w11fZQoaAZoCWgPQwg4ZW6+kfBuQJSGlFKUaBVLzWgWR0CmrTOtGNJfdX2UKGgGaAloD0MII/Qz9bqEcECUhpRSlGgVS/poFkdApq2ddcB2fXV9lChoBmgJaA9DCOY+OQoQGGxAlIaUUpRoFUvbaBZHQKat7Eit7rt1fZQoaAZoCWgPQwj1nsppT+ltQJSGlFKUaBVL9mgWR0CmrgFqzqrzdX2UKGgGaAloD0MI0m2JXHB1bUCUhpRSlGgVTQABaBZHQKauhgrH2h91fZQoaAZoCWgPQwg5Kcx7XLxxQJSGlFKUaBVL+2gWR0Cmrot1ZDArdX2UKGgGaAloD0MIw5rKonAOcUCUhpRSlGgVS+loFkdApq/Bha1Ti3V9lChoBmgJaA9DCDW1bK0v9HJAlIaUUpRoFUvkaBZHQKav8d3jdYZ1fZQoaAZoCWgPQwjYmxiS0xhwQJSGlFKUaBVL5GgWR0CmsC7OeJ53dX2UKGgGaAloD0MIxOv6BfsUcECUhpRSlGgVS+loFkdAprA2Yx+KCXV9lChoBmgJaA9DCILK+PeZDWJAlIaUUpRoFU3oA2gWR0CmsE9uHerNdX2UKGgGaAloD0MIUOEIUinoSkCUhpRSlGgVS75oFkdAprCOtlqagHV9lChoBmgJaA9DCObMdoX+FnBAlIaUUpRoFUveaBZHQKawk0rK/211fZQoaAZoCWgPQwiZRpOLsdZlQJSGlFKUaBVN6ANoFkdAprCg6r/823V9lChoBmgJaA9DCBXikXh5FXJAlIaUUpRoFUvZaBZHQKaxLqC6H0t1fZQoaAZoCWgPQwiG4/kM6IRxQJSGlFKUaBVL9WgWR0CmskW07bL2dX2UKGgGaAloD0MICoFc4khxcUCUhpRSlGgVTVoBaBZHQKayczposZp1fZQoaAZoCWgPQwjlYgysY9ZpQJSGlFKUaBVNLwFoFkdAprKdoi9qUXV9lChoBmgJaA9DCHedDflnnkFAlIaUUpRoFUvFaBZHQKazJ54W1tx1fZQoaAZoCWgPQwgCSG3iZHxuQJSGlFKUaBVL5GgWR0Cms3JXIU8FdX2UKGgGaAloD0MILsiW5atNcUCUhpRSlGgVS9loFkdAprOHbdrO7nV9lChoBmgJaA9DCK2+uiqQf3JAlIaUUpRoFU0OAWgWR0Cms+4Wk8A8dX2UKGgGaAloD0MIh8Woay0ockCUhpRSlGgVS+5oFkdAprQ7m4iHI3V9lChoBmgJaA9DCBkfZi9b0m9AlIaUUpRoFUvzaBZHQKa0XkXk5p91fZQoaAZoCWgPQwirQC0Gz0RxQJSGlFKUaBVNVQFoFkdAprWbFuNxVHV9lChoBmgJaA9DCPD3i9kSHnFAlIaUUpRoFUvRaBZHQKa1pl6qsEJ1fZQoaAZoCWgPQwhtOZfiKlxyQJSGlFKUaBVNSwFoFkdAprW70Bfa6HV9lChoBmgJaA9DCF3fh4OE8nFAlIaUUpRoFU0wAWgWR0Cmtg4qoZQ6dX2UKGgGaAloD0MIQpPEkrK3ckCUhpRSlGgVS+FoFkdAprY+FWXC0nV9lChoBmgJaA9DCBWQ9j9AHGJAlIaUUpRoFU3oA2gWR0Cmtm+pfhMrdX2UKGgGaAloD0MI6IL6ljn+cECUhpRSlGgVS9VoFkdApraO2NNrTHV9lChoBmgJaA9DCPM8uDsrUnFAlIaUUpRoFUvDaBZHQKa2nTAnDzl1fZQoaAZoCWgPQwik/KTa51hxQJSGlFKUaBVL7GgWR0Cmtxj0+TvBdX2UKGgGaAloD0MIjdXm/9WNb0CUhpRSlGgVS9hoFkdApreMgMc6vXV9lChoBmgJaA9DCBhA+FCiiG9AlIaUUpRoFUvzaBZHQKa3p4yGi6B1fZQoaAZoCWgPQwjjjcwjf5BuQJSGlFKUaBVL2GgWR0Cmt66WHDaXdX2UKGgGaAloD0MIdFyN7ErvZECUhpRSlGgVTegDaBZHQKa4Y8U21lZ1fZQoaAZoCWgPQwg09E9wMZhvQJSGlFKUaBVL12gWR0CmuNIeHSF5dX2UKGgGaAloD0MIem8MAYBScECUhpRSlGgVS/VoFkdAprkyh6By0nV9lChoBmgJaA9DCKhy2lNydm5AlIaUUpRoFUvbaBZHQKa5XMi8nNR1fZQoaAZoCWgPQwjAsWfPpSVxQJSGlFKUaBVL2mgWR0CmuYxBeHBUdX2UKGgGaAloD0MIumkzTkOUb0CUhpRSlGgVS+1oFkdAproLho/RmnV9lChoBmgJaA9DCAUabOr82nBAlIaUUpRoFUv8aBZHQKa6Np8neBR1fZQoaAZoCWgPQwg6rdugdnxuQJSGlFKUaBVL32gWR0CmumCFK02MdX2UKGgGaAloD0MIttlYiXnBcECUhpRSlGgVS/FoFkdAprsfSc9W63V9lChoBmgJaA9DCFuVRPbBO3FAlIaUUpRoFU17AWgWR0CmuzyGi5/cdX2UKGgGaAloD0MIYymSrwTKYUCUhpRSlGgVTegDaBZHQKa7ThsImgJ1fZQoaAZoCWgPQwj4+e/B6xtxQJSGlFKUaBVNBgFoFkdApruXzjFQ23V9lChoBmgJaA9DCLTJ4ZNOvnBAlIaUUpRoFU0JAWgWR0Cmu5xigCfZdX2UKGgGaAloD0MIeomxTP+YcECUhpRSlGgVS9VoFkdAprujNr0rb3V9lChoBmgJaA9DCAPPvYdLn3BAlIaUUpRoFUvRaBZHQKa8yWJrLyN1fZQoaAZoCWgPQwhtUzwuqvVwQJSGlFKUaBVL7GgWR0CmvQp/oaDPdX2UKGgGaAloD0MI/kgRGVbicUCUhpRSlGgVTQQBaBZHQKa9QG21D0F1fZQoaAZoCWgPQwi31awzftBwQJSGlFKUaBVL7mgWR0Cmvc9KNAC5dX2UKGgGaAloD0MIJAot636rYUCUhpRSlGgVTegDaBZHQKa97XgccVB1fZQoaAZoCWgPQwgj3GRUGfZtQJSGlFKUaBVL52gWR0CmvhBuGbkPdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5a6383585c984a649a4156020de1f6214d847718539c1f2833ed3e68642eef
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f12878696d8c60ce4c9c098bbe117bcc3cadf828168f55405a8542d335419c1c
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (227 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.93831748342603, "std_reward": 14.346197652148623, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T05:46:23.331447"}
|