File size: 4,054 Bytes
a7902ad
 
 
 
 
 
 
d4779c4
 
 
8c86a8d
 
d4779c4
39e57a3
d4779c4
3b7350b
 
d4779c4
3b7350b
d4779c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d10f6e6
38dc412
d4779c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dc412
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
tags:
- unconditional-image-generation
- pytorch
license: mit
---

# min(DALL路E)

[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb)
[![Replicate](https://replicate.com/kuprel/min-dalle/badge)](https://replicate.com/kuprel/min-dalle)
[![Discord](https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white)](https://discord.com/channels/823813159592001537/912729332311556136)

This is a fast, minimal port of [DALL路E Mega](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mega-Training-Journal--VmlldzoxODMxMDI2).  It has been stripped down for inference and converted to PyTorch.  The only third party dependencies are numpy, requests, pillow and torch.

To generate a 4x4 grid of DALL路E Mega images it takes:
- 89 sec with a T4 in Colab
- 48 sec with a P100 in Colab
- 13 sec with an A100 on Replicate

## Install

```bash
$ pip install min-dalle
```  

## Usage

Load the model parameters once and reuse the model to generate multiple images.

```python
from min_dalle import MinDalle

model = MinDalle(
    models_root='./pretrained',
    dtype=torch.float32,
    is_mega=True, 
    is_reusable=True
)
```

The required models will be downloaded to `models_root` if they are not already there.  Set the `dtype` to `torch.float16` to save GPU memory.  If you have an Ampere architecture GPU you can use `torch.bfloat16`.  Once everything has finished initializing, call `generate_image` with some text as many times as you want.  Use a positive `seed` for reproducible results.  Higher values for `log2_supercondition_factor` result in better agreement with the text but a narrower variety of generated images.  Every image token is sampled from the top-$k$ most probable tokens.

```python
image = model.generate_image(
    text='Nuclear explosion broccoli',
    seed=-1,
    grid_size=4,
    log2_k=6,
    log2_supercondition_factor=5,
    is_verbose=False
)

display(image)
```
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/nuclear_broccoli.jpg" alt="min-dalle" width="400"/>

credit: [https://twitter.com/hardmaru/status/1544354119527596034](https://twitter.com/hardmaru/status/1544354119527596034)


### Saving Individual Images
The images can also be generated as a `FloatTensor` in case you want to process them manually.

```python
images = model.generate_images(
    text='Nuclear explosion broccoli',
    seed=-1,
    image_count=7,
    log2_k=6,
    log2_supercondition_factor=5,
    is_verbose=False
)
```

To get an image into PIL format you will have to first move the images to the CPU and convert the tensor to a numpy array.
```python
images = images.to('cpu').numpy()
```
Then image $i$ can be coverted to a PIL.Image and saved
```python
image = Image.fromarray(images[i])
image.save('image_{}.png'.format(i))
```

### Interactive

If the model is being used interactively (e.g. in a notebook) `generate_image_stream` can be used to generate a stream of images as the model is decoding.  The detokenizer adds a slight delay for each image.  Setting `log2_mid_count` to 3 results in a total of `2 ** 3 = 8` generated images.  The only valid values for `log2_mid_count` are 0, 1, 2, 3, and 4.  This is implemented in the colab.

```python
image_stream = model.generate_image_stream(
    text='Dali painting of WALL路E',
    seed=-1,
    grid_size=3,
    log2_mid_count=3,
    log2_k=6,
    log2_supercondition_factor=3,
    is_verbose=False
)

for image in image_stream:
    display(image)
```
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/dali_walle_animated.gif" alt="min-dalle" width="300"/>

### Command Line

Use `image_from_text.py` to generate images from the command line.

```bash
$ python image_from_text.py --text='artificial intelligence' --no-mega
```
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/artificial_intelligence.jpg" alt="min-dalle" width="200"/>

<br />

[Sponsor this work](https://github.com/sponsors/kuprel)