Update README.md
Browse files
README.md
CHANGED
@@ -8,15 +8,23 @@ license: mit
|
|
8 |
|
9 |
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb)
|
10 |
[![Discord](https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white)](https://discord.com/channels/823813159592001537/912729332311556136)
|
11 |
-
[GitHub](https://github.com/kuprel/min-dalle)
|
|
|
12 |
|
13 |
-
This is a fast, minimal port of [DALL·E
|
14 |
|
15 |
To generate a 4x4 grid of DALL·E Mega images it takes:
|
16 |
- 89 sec with a T4 in Colab
|
17 |
- 48 sec with a P100 in Colab
|
18 |
- 13 sec with an A100 on Replicate
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
## Install
|
21 |
|
22 |
```bash
|
@@ -33,20 +41,23 @@ from min_dalle import MinDalle
|
|
33 |
model = MinDalle(
|
34 |
models_root='./pretrained',
|
35 |
dtype=torch.float32,
|
|
|
36 |
is_mega=True,
|
37 |
is_reusable=True
|
38 |
)
|
39 |
```
|
40 |
|
41 |
-
The required models will be downloaded to `models_root` if they are not already there. Set the `dtype` to `torch.float16` to save GPU memory. If you have an Ampere architecture GPU you can use `torch.bfloat16`. Once everything has finished initializing, call `generate_image` with some text as many times as you want. Use a positive `seed` for reproducible results. Higher values for `
|
42 |
|
43 |
```python
|
44 |
image = model.generate_image(
|
45 |
text='Nuclear explosion broccoli',
|
46 |
seed=-1,
|
47 |
grid_size=4,
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
is_verbose=False
|
51 |
)
|
52 |
|
@@ -54,7 +65,7 @@ display(image)
|
|
54 |
```
|
55 |
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/nuclear_broccoli.jpg" alt="min-dalle" width="400"/>
|
56 |
|
57 |
-
|
58 |
|
59 |
|
60 |
### Saving Individual Images
|
@@ -64,9 +75,11 @@ The images can also be generated as a `FloatTensor` in case you want to process
|
|
64 |
images = model.generate_images(
|
65 |
text='Nuclear explosion broccoli',
|
66 |
seed=-1,
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
is_verbose=False
|
71 |
)
|
72 |
```
|
@@ -81,18 +94,20 @@ image = Image.fromarray(images[i])
|
|
81 |
image.save('image_{}.png'.format(i))
|
82 |
```
|
83 |
|
84 |
-
###
|
85 |
|
86 |
-
If the model is being used interactively (e.g. in a notebook) `generate_image_stream` can be used to generate a stream of images as the model is decoding. The detokenizer adds a slight delay for each image.
|
87 |
|
88 |
```python
|
89 |
image_stream = model.generate_image_stream(
|
90 |
text='Dali painting of WALL·E',
|
91 |
seed=-1,
|
92 |
grid_size=3,
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
is_verbose=False
|
97 |
)
|
98 |
|
@@ -108,8 +123,4 @@ Use `image_from_text.py` to generate images from the command line.
|
|
108 |
```bash
|
109 |
$ python image_from_text.py --text='artificial intelligence' --no-mega
|
110 |
```
|
111 |
-
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/artificial_intelligence.jpg" alt="min-dalle" width="200"/>
|
112 |
-
|
113 |
-
<br />
|
114 |
-
|
115 |
-
[Sponsor this work](https://github.com/sponsors/kuprel)
|
|
|
8 |
|
9 |
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb)
|
10 |
[![Discord](https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white)](https://discord.com/channels/823813159592001537/912729332311556136)
|
11 |
+
**[GitHub](https://github.com/kuprel/min-dalle)**
|
12 |
+
**[❤️ Sponsor](https://github.com/sponsors/kuprel)**
|
13 |
|
14 |
+
This is a fast, minimal port of Boris Dayma's [DALL·E Mini](https://github.com/borisdayma/dalle-mini) (with mega weights). It has been stripped down for inference and converted to PyTorch. The only third party dependencies are numpy, requests, pillow and torch.
|
15 |
|
16 |
To generate a 4x4 grid of DALL·E Mega images it takes:
|
17 |
- 89 sec with a T4 in Colab
|
18 |
- 48 sec with a P100 in Colab
|
19 |
- 13 sec with an A100 on Replicate
|
20 |
|
21 |
+
Here's a more detailed breakdown of performance on an A100. Credit to [@technobird22](https://github.com/technobird22) and his [NeoGen](https://github.com/technobird22/NeoGen) discord bot for the graph.
|
22 |
+
<br />
|
23 |
+
<img src="https://github.com/kuprel/min-dalle/raw/main/performance.png" alt="min-dalle" width="450"/>
|
24 |
+
<br />
|
25 |
+
|
26 |
+
The flax model and code for converting it to torch can be found [here](https://github.com/kuprel/min-dalle-flax).
|
27 |
+
|
28 |
## Install
|
29 |
|
30 |
```bash
|
|
|
41 |
model = MinDalle(
|
42 |
models_root='./pretrained',
|
43 |
dtype=torch.float32,
|
44 |
+
device='cuda',
|
45 |
is_mega=True,
|
46 |
is_reusable=True
|
47 |
)
|
48 |
```
|
49 |
|
50 |
+
The required models will be downloaded to `models_root` if they are not already there. Set the `dtype` to `torch.float16` to save GPU memory. If you have an Ampere architecture GPU you can use `torch.bfloat16`. Set the `device` to either "cuda" or "cpu". Once everything has finished initializing, call `generate_image` with some text as many times as you want. Use a positive `seed` for reproducible results. Higher values for `supercondition_factor` result in better agreement with the text but a narrower variety of generated images. Every image token is sampled from the `top_k` most probable tokens. The largest logit is subtracted from the logits to avoid infs. The logits are then divided by the `temperature`. If `is_seamless` is true, the image grid will be tiled in token space not pixel space.
|
51 |
|
52 |
```python
|
53 |
image = model.generate_image(
|
54 |
text='Nuclear explosion broccoli',
|
55 |
seed=-1,
|
56 |
grid_size=4,
|
57 |
+
is_seamless=False,
|
58 |
+
temperature=1,
|
59 |
+
top_k=256,
|
60 |
+
supercondition_factor=32,
|
61 |
is_verbose=False
|
62 |
)
|
63 |
|
|
|
65 |
```
|
66 |
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/nuclear_broccoli.jpg" alt="min-dalle" width="400"/>
|
67 |
|
68 |
+
Credit to [@hardmaru](https://twitter.com/hardmaru) for the [example](https://twitter.com/hardmaru/status/1544354119527596034)
|
69 |
|
70 |
|
71 |
### Saving Individual Images
|
|
|
75 |
images = model.generate_images(
|
76 |
text='Nuclear explosion broccoli',
|
77 |
seed=-1,
|
78 |
+
grid_size=3,
|
79 |
+
is_seamless=False,
|
80 |
+
temperature=1,
|
81 |
+
top_k=256,
|
82 |
+
supercondition_factor=16,
|
83 |
is_verbose=False
|
84 |
)
|
85 |
```
|
|
|
94 |
image.save('image_{}.png'.format(i))
|
95 |
```
|
96 |
|
97 |
+
### Progressive Outputs
|
98 |
|
99 |
+
If the model is being used interactively (e.g. in a notebook) `generate_image_stream` can be used to generate a stream of images as the model is decoding. The detokenizer adds a slight delay for each image. Set `progressive_outputs` to `True` to enable this. An example is implemented in the colab.
|
100 |
|
101 |
```python
|
102 |
image_stream = model.generate_image_stream(
|
103 |
text='Dali painting of WALL·E',
|
104 |
seed=-1,
|
105 |
grid_size=3,
|
106 |
+
progressive_outputs=True,
|
107 |
+
is_seamless=False,
|
108 |
+
temperature=1,
|
109 |
+
top_k=256,
|
110 |
+
supercondition_factor=16,
|
111 |
is_verbose=False
|
112 |
)
|
113 |
|
|
|
123 |
```bash
|
124 |
$ python image_from_text.py --text='artificial intelligence' --no-mega
|
125 |
```
|
126 |
+
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/artificial_intelligence.jpg" alt="min-dalle" width="200"/>
|
|
|
|
|
|
|
|