---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
widget:
structuredData:
x0:
- 0.6666666666666667
- 1.0
- 1.0
x1:
- 0.0
- 0.0
- 0.0
x10:
- 0.0
- 0.0
- 0.0
x11:
- 0.0
- 1.0
- 0.0
x12:
- 1.0
- 0.0
- 1.0
x13:
- 0.0
- 0.0
- 0.0
x14:
- 0.0
- 0.0
- 0.0
x15:
- 1.0
- 0.0
- 0.0
x16:
- 0.0
- 0.0
- 0.0
x17:
- 0.0
- 0.0
- 1.0
x18:
- 0.0
- 0.0
- 0.0
x19:
- 0.0
- 1.0
- 0.0
x2:
- 1.0
- 1.0
- 1.0
x20:
- 1.0
- 0.0
- 0.0
x21:
- 0.0
- 1.0
- 1.0
x22:
- 0.0
- 0.0
- 0.0
x23:
- 1.0
- 0.0
- 1.0
x24:
- 0.0
- 0.0
- 0.0
x25:
- 0.0
- 0.0
- 0.0
x26:
- 0.0
- 0.0
- 0.0
x27:
- 0.0
- 1.0
- 0.0
x3:
- 0.0
- 1.0
- 0.0
x4:
- 0.0
- 0.0
- 1.0
x5:
- 1.0
- 0.0
- 0.0
x6:
- 0.0
- 0.0
- 0.0
x7:
- 0.24999999999999997
- 0.14285714285714285
- 0.3571428571428571
x8:
- 0.4772654358070523
- 0.47033921746222385
- 0.32320252247170167
x9:
- 0.0
- 0.0
- 0.0
---
# Model description
This is a Random Forest model trained on entire set of features from data provided by Reunion.
## Intended uses & limitations
This model is not fine-tuned for production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cv | 3 |
| error_score | nan |
| estimator__bootstrap | True |
| estimator__ccp_alpha | 0.0 |
| estimator__class_weight | balanced |
| estimator__criterion | gini |
| estimator__max_depth | |
| estimator__max_features | auto |
| estimator__max_leaf_nodes | |
| estimator__max_samples | |
| estimator__min_impurity_decrease | 0.0 |
| estimator__min_impurity_split | |
| estimator__min_samples_leaf | 1 |
| estimator__min_samples_split | 2 |
| estimator__min_weight_fraction_leaf | 0.0 |
| estimator__n_estimators | 100 |
| estimator__n_jobs | -1 |
| estimator__oob_score | False |
| estimator__random_state | 42 |
| estimator__verbose | 1 |
| estimator__warm_start | False |
| estimator | RandomForestClassifier(class_weight='balanced', n_jobs=-1, random_state=42,
verbose=1) |
| n_iter | 100 |
| n_jobs | -1 |
| param_distributions | {'n_estimators': [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000], 'max_features': ['auto', 'sqrt'], 'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'bootstrap': [True, False]} |
| pre_dispatch | 2*n_jobs |
| random_state | 42 |
| refit | True |
| return_train_score | False |
| scoring | |
| verbose | 2 |
RandomizedSearchCV(cv=3,estimator=RandomForestClassifier(class_weight='balanced',n_jobs=-1, random_state=42,verbose=1),n_iter=100, n_jobs=-1,param_distributions={'bootstrap': [True, False],'max_depth': [10, 20, 30, 40, 50, 60,70, 80, 90, 100, 110,None],'max_features': ['auto', 'sqrt'],'min_samples_leaf': [1, 2, 4],'min_samples_split': [2, 5, 10],'n_estimators': [200, 400, 600, 800,1000, 1200, 1400, 1600,1800, 2000]},random_state=42, verbose=2)
RandomForestClassifier(class_weight='balanced', n_jobs=-1, random_state=42,verbose=1)