kvasYA commited on
Commit
5fa24eb
1 Parent(s): ad2f745

End of training

Browse files
Files changed (2) hide show
  1. README.md +186 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 8818eebe-3505-4b30-8d5c-72c319b17bab
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
22
+ bf16: auto
23
+ chat_template: llama3
24
+ cosine_min_lr_ratio: 0.1
25
+ data_processes: 4
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - f3058a58b1f571da_train_data.json
30
+ ds_type: json
31
+ format: custom
32
+ num_proc: 4
33
+ path: /workspace/input_data/f3058a58b1f571da_train_data.json
34
+ streaming: true
35
+ type:
36
+ field_instruction: question
37
+ field_output: answers
38
+ format: '{instruction}'
39
+ no_input_format: '{instruction}'
40
+ system_format: '{system}'
41
+ system_prompt: ''
42
+ debug: null
43
+ deepspeed: null
44
+ device_map:
45
+ lm_head: 1
46
+ model.embed_tokens: 0
47
+ model.layers.0: 0
48
+ model.layers.1: 0
49
+ model.layers.10: 1
50
+ model.layers.11: 1
51
+ model.layers.2: 0
52
+ model.layers.3: 0
53
+ model.layers.4: 0
54
+ model.layers.5: 0
55
+ model.layers.6: 1
56
+ model.layers.7: 1
57
+ model.layers.8: 1
58
+ model.layers.9: 1
59
+ model.norm: 1
60
+ do_eval: true
61
+ early_stopping_patience: 1
62
+ eval_batch_size: 1
63
+ eval_sample_packing: false
64
+ eval_steps: 25
65
+ evaluation_strategy: steps
66
+ flash_attention: false
67
+ fp16: null
68
+ fsdp: null
69
+ fsdp_config: null
70
+ gradient_accumulation_steps: 32
71
+ gradient_checkpointing: true
72
+ group_by_length: true
73
+ hub_model_id: kvasYA/8818eebe-3505-4b30-8d5c-72c319b17bab
74
+ hub_strategy: checkpoint
75
+ hub_token: null
76
+ learning_rate: 0.0001
77
+ load_in_4bit: false
78
+ load_in_8bit: false
79
+ local_rank: null
80
+ logging_steps: 1
81
+ lora_alpha: 64
82
+ lora_dropout: 0.05
83
+ lora_fan_in_fan_out: null
84
+ lora_model_dir: null
85
+ lora_r: 32
86
+ lora_target_linear: true
87
+ lora_target_modules:
88
+ - q_proj
89
+ - v_proj
90
+ lr_scheduler: cosine
91
+ max_grad_norm: 0.3
92
+ max_memory:
93
+ 0: 70GB
94
+ 1: 70GB
95
+ cpu: 96GB
96
+ max_steps: 50
97
+ micro_batch_size: 1
98
+ mixed_precision: bf16
99
+ mlflow_experiment_name: /tmp/f3058a58b1f571da_train_data.json
100
+ model_type: AutoModelForCausalLM
101
+ num_epochs: 3
102
+ optim_args:
103
+ adam_beta1: 0.9
104
+ adam_beta2: 0.95
105
+ adam_epsilon: 1e-5
106
+ optimizer: adamw_torch
107
+ output_dir: miner_id_24
108
+ pad_to_sequence_len: true
109
+ resume_from_checkpoint: null
110
+ s2_attention: null
111
+ sample_packing: false
112
+ save_steps: 25
113
+ save_strategy: steps
114
+ sequence_len: 2048
115
+ strict: false
116
+ tf32: false
117
+ tokenizer_type: AutoTokenizer
118
+ torch_compile: false
119
+ torch_dtype: bfloat16
120
+ train_on_inputs: false
121
+ trust_remote_code: true
122
+ use_cache: false
123
+ val_set_size: 50
124
+ wandb_entity: null
125
+ wandb_mode: online
126
+ wandb_name: 8818eebe-3505-4b30-8d5c-72c319b17bab
127
+ wandb_project: Public_TuningSN
128
+ wandb_runid: 8818eebe-3505-4b30-8d5c-72c319b17bab
129
+ warmup_ratio: 0.05
130
+ weight_decay: 0.01
131
+ xformers_attention: null
132
+
133
+ ```
134
+
135
+ </details><br>
136
+
137
+ # 8818eebe-3505-4b30-8d5c-72c319b17bab
138
+
139
+ This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset.
140
+ It achieves the following results on the evaluation set:
141
+ - Loss: nan
142
+
143
+ ## Model description
144
+
145
+ More information needed
146
+
147
+ ## Intended uses & limitations
148
+
149
+ More information needed
150
+
151
+ ## Training and evaluation data
152
+
153
+ More information needed
154
+
155
+ ## Training procedure
156
+
157
+ ### Training hyperparameters
158
+
159
+ The following hyperparameters were used during training:
160
+ - learning_rate: 0.0001
161
+ - train_batch_size: 1
162
+ - eval_batch_size: 1
163
+ - seed: 42
164
+ - gradient_accumulation_steps: 32
165
+ - total_train_batch_size: 32
166
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
167
+ - lr_scheduler_type: cosine
168
+ - lr_scheduler_warmup_steps: 2
169
+ - training_steps: 50
170
+
171
+ ### Training results
172
+
173
+ | Training Loss | Epoch | Step | Validation Loss |
174
+ |:-------------:|:------:|:----:|:---------------:|
175
+ | 0.0 | 0.0062 | 1 | nan |
176
+ | 0.0 | 0.1550 | 25 | nan |
177
+ | 0.0 | 0.3101 | 50 | nan |
178
+
179
+
180
+ ### Framework versions
181
+
182
+ - PEFT 0.13.2
183
+ - Transformers 4.46.0
184
+ - Pytorch 2.5.0+cu124
185
+ - Datasets 3.0.1
186
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e0d0c56c7debf1e0eccb92a65d762a18524c39b84eb5e06c244e403a15257f7
3
+ size 860011282