File size: 3,525 Bytes
a3f09db 023e185 a3f09db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
library_name: peft
license: gemma
base_model: google/gemma-2-2b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: gemma-2-2b-it-dolly-15k
results: []
datasets:
- databricks/databricks-dolly-15k
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.2`
```yaml
base_model: google/gemma-2-2b-it
hub_model_id: kweinmeister/gemma-2-2b-it-dolly-15k
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: databricks/databricks-dolly-15k
type:
field_instruction: instruction
field_input: context
field_output: response
val_set_size: 0.05
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: gemma-2-2b-it-dolly-15k
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero1.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
output_dir: "/mnt/disks/gcs/axolotl/runs/google--gemma-2-2b-it-20250101-144050/out/"
dataset_prepared_path: "/mnt/disks/gcs/axolotl/last_run_prepared"
```
</details><br>
# gemma-2-2b-it-dolly-15k
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7389
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.7033 | 0.0061 | 1 | 5.5100 |
| 1.8197 | 0.2492 | 41 | 1.8752 |
| 1.6386 | 0.4985 | 82 | 1.7666 |
| 1.7346 | 0.7477 | 123 | 1.7436 |
| 1.7742 | 0.9970 | 164 | 1.7389 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.4.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |