kye commited on
Commit
2f4015d
·
1 Parent(s): ca4fc4d

Upload 77 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
  Andromeda/images/andromeda-banner.png filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
  Andromeda/images/andromeda-banner.png filter=lfs diff=lfs merge=lfs -text
36
+ images/andromeda-banner.png filter=lfs diff=lfs merge=lfs -text
images/agora-banner.png ADDED
images/andromeda-banner.png ADDED

Git LFS Details

  • SHA256: 13ab49a87431850f65716803fb1181ad2d4626e4a91b2d2395df607ccfe7da3f
  • Pointer size: 133 Bytes
  • Size of remote file: 23.2 MB
images/andromeda_performance.png ADDED
train_simple.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gzip
2
+ import random
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.optim as optim
7
+ import tqdm
8
+ from torch.utils.data import DataLoader, Dataset
9
+
10
+ from Andromeda.model import Andromeda
11
+
12
+ from Andromeda.core.transformer import Decoder, AndromedaEmbedding, Transformer
13
+ from Andromeda.core.autoregressive_wrapper import AutoregressiveWrapper
14
+ # constants
15
+
16
+ NUM_BATCHES = int(1e5)
17
+ BATCH_SIZE = 4
18
+ GRADIENT_ACCUMULATE_EVERY = 1
19
+ LEARNING_RATE = 1e-4
20
+ VALIDATE_EVERY = 100
21
+ GENERATE_EVERY = 500
22
+ GENERATE_LENGTH = 1024
23
+ SEQ_LEN = 1024
24
+
25
+ # helpers
26
+
27
+ def cycle(loader):
28
+ while True:
29
+ for data in loader:
30
+ yield data
31
+
32
+ def decode_token(token):
33
+ return str(chr(max(32, token)))
34
+
35
+ def decode_tokens(tokens):
36
+ return ''.join(list(map(decode_token, tokens)))
37
+
38
+ # instantiate GPT-like decoder model
39
+
40
+ model = Transformer(
41
+ num_tokens=50432,
42
+ max_seq_len=8192,
43
+ use_abs_pos_emb=False,
44
+ embedding_provider=AndromedaEmbedding(),
45
+ attn_layers=Decoder(
46
+ dim=2560,
47
+ depth=32,
48
+ dim_head=128,
49
+ heads=24,
50
+ alibi_pos_bias=True,
51
+ alibi_num_heads=12,
52
+ rotary_xpos=True,
53
+ attn_flash=True,
54
+ # deepnorm=deepnorm,
55
+ # shift_tokens=shift_tokens,
56
+ attn_one_kv_head=True,
57
+ qk_norm=True,
58
+ attn_qk_norm=True,
59
+ attn_qk_norm_dim_scale=True
60
+ )
61
+ )
62
+
63
+ model = AutoregressiveWrapper(model)
64
+
65
+ model.cuda()
66
+
67
+ # prepare enwik8 data
68
+
69
+ with gzip.open('./data/enwik8.gz') as file:
70
+ data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy()
71
+ train_x, valid_x = np.split(data, [int(90e6)])
72
+ data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x)
73
+
74
+ class TextSamplerDataset(Dataset):
75
+ def __init__(self, data, seq_len):
76
+ super().__init__()
77
+ self.data = data
78
+ self.seq_len = seq_len
79
+
80
+ def __getitem__(self, index):
81
+ rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,))
82
+ full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
83
+ return full_seq.cuda()
84
+
85
+ def __len__(self):
86
+ return self.data.size(0) // self.seq_len
87
+
88
+ train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
89
+ val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
90
+ train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE, drop_last = True))
91
+ val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE, drop_last = True))
92
+
93
+ # optimizer
94
+
95
+ optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
96
+
97
+ # training
98
+
99
+ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'):
100
+ model.train()
101
+
102
+ for __ in range(GRADIENT_ACCUMULATE_EVERY):
103
+ loss = model(next(train_loader))
104
+ (loss / GRADIENT_ACCUMULATE_EVERY).backward()
105
+
106
+ print(f'training loss: {loss.item()}')
107
+ torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
108
+ optim.step()
109
+ optim.zero_grad()
110
+
111
+ if i % VALIDATE_EVERY == 0:
112
+ model.eval()
113
+ with torch.no_grad():
114
+ loss = model(next(val_loader))
115
+ print(f'validation loss: {loss.item()}')
116
+
117
+ #save the model weights
118
+ torch.save(model.state_dict(), f"./model_{i}.pth")
119
+
120
+ if i % GENERATE_EVERY == 0:
121
+ model.eval()
122
+ inp = random.choice(val_dataset)[:-1]
123
+ prime = decode_tokens(inp)
124
+ print('%s \n\n %s', (prime, '*' * 100))
125
+
126
+ sample = model.generate(inp, GENERATE_LENGTH)
127
+ output_str = decode_tokens(sample)
128
+ print(output_str)