kyujinpy commited on
Commit
38299fa
·
1 Parent(s): 14e890d

Upload 2 files

Browse files
Files changed (2) hide show
  1. Koisy_llama.JPG +0 -0
  2. README.md +2 -2
Koisy_llama.JPG ADDED
README.md CHANGED
@@ -20,7 +20,7 @@ license: cc-by-nc-sa-4.0
20
  (Noisy + KO + llama = Kosy🍵llama)
21
 
22
  **Repo Link**
23
- Github **KoNEFTune**(not public; wait!): [Kosy🍵llama](https://github.com/Marker-Inc-Korea/KoNEFTune)
24
  If you visit our github, you can easily apply **Random_noisy_embedding_fine-tuning**!!
25
 
26
  **Base Model**
@@ -39,7 +39,7 @@ I use A100 GPU 40GB and COLAB, when trianing.
39
  | [Ko-Platypus2-13B](https://huggingface.co/kyujinpy/KO-Platypus2-13B) | 45.60 | 44.20 | 54.31 | 42.47 | 44.41 | 42.62 |
40
  | *NEFT(🍵kosy)+MLP-v1 | 43.64 | 43.94 | 53.88 | 42.68 | 43.46 | 34.24 |
41
  | *NEFT(🍵kosy)+MLP-v2 | 45.45 | 44.20 | 54.56 | 42.60 | 42.68 | 42.98 |
42
- | ***NEFT(🍵kosy)+MLP-v3** | 46.31 | 43.34 | 54.54 | 43.38 | 44.11 | 46.16 |
43
  | NEFT(🍵kosy)+Attention | 44.92 |42.92 | 54.48 | 42.99 | 43.00 | 41.20 |
44
  | NEFT(🍵kosy) | 45.08 | 43.09 | 53.61 | 41.06 | 43.47 | 43.21 |
45
  > *Different Hyperparameters such that learning_rate, batch_size, epoch, etc...
 
20
  (Noisy + KO + llama = Kosy🍵llama)
21
 
22
  **Repo Link**
23
+ Github **KoNEFTune**: [Kosy🍵llama](https://github.com/Marker-Inc-Korea/KoNEFTune)
24
  If you visit our github, you can easily apply **Random_noisy_embedding_fine-tuning**!!
25
 
26
  **Base Model**
 
39
  | [Ko-Platypus2-13B](https://huggingface.co/kyujinpy/KO-Platypus2-13B) | 45.60 | 44.20 | 54.31 | 42.47 | 44.41 | 42.62 |
40
  | *NEFT(🍵kosy)+MLP-v1 | 43.64 | 43.94 | 53.88 | 42.68 | 43.46 | 34.24 |
41
  | *NEFT(🍵kosy)+MLP-v2 | 45.45 | 44.20 | 54.56 | 42.60 | 42.68 | 42.98 |
42
+ | [***NEFT(🍵kosy)+MLP-v3**](https://huggingface.co/kyujinpy/Kosy-platypus2-13B-v3) | 46.31 | 43.34 | 54.54 | 43.38 | 44.11 | 46.16 |
43
  | NEFT(🍵kosy)+Attention | 44.92 |42.92 | 54.48 | 42.99 | 43.00 | 41.20 |
44
  | NEFT(🍵kosy) | 45.08 | 43.09 | 53.61 | 41.06 | 43.47 | 43.21 |
45
  > *Different Hyperparameters such that learning_rate, batch_size, epoch, etc...