kyujinpy commited on
Commit
c3e5166
1 Parent(s): 1a82ca8

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md CHANGED
@@ -1,3 +1,63 @@
1
  ---
 
 
 
 
 
 
2
  license: cc-by-nc-sa-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ko
4
+ datasets:
5
+ - kyujinpy/KOpen-platypus
6
+ library_name: transformers
7
+ pipeline_tag: text-generation
8
  license: cc-by-nc-sa-4.0
9
  ---
10
+
11
+ # **Kosy🍵llama**
12
+ ![img](./Koisy_llama.JPG)
13
+
14
+ ## Model Details
15
+
16
+ **Model Developers** Kyujin Han (kyujinpy)
17
+
18
+ **Model Description**
19
+ [NEFTune](https://github.com/neelsjain/NEFTune) method를 활용하여 훈련한 Ko-platypus2 new version!
20
+ (Noisy + KO + llama = Kosy🍵llama)
21
+
22
+ **Repo Link**
23
+ Github **KoNEFTune**(not public; wait!): [Kosy🍵llama](https://github.com/Marker-Inc-Korea/KoNEFTune)
24
+ If you visit our github, you can easily apply **Random_noisy_embedding_fine-tuning**!!
25
+
26
+ **Base Model**
27
+ [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b)
28
+
29
+ **Training Dataset**
30
+ Version of combined dataset: [kyujinpy/KOpen-platypus](https://huggingface.co/datasets/kyujinpy/KOpen-platypus)
31
+ I use A100 GPU 40GB and COLAB, when trianing.
32
+
33
+ # **Model comparisons**
34
+ [KO-LLM leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)
35
+ # **NEFT comparisons**
36
+ ![img](./comparison.png)
37
+ | Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
38
+ | --- | --- | --- | --- | --- | --- | --- |
39
+ | [Ko-Platypus2-13B](https://huggingface.co/kyujinpy/KO-Platypus2-13B) | 45.60 | 44.20 | 54.31 | 42.47 | 44.41 | 42.62 |
40
+ | *NEFT(🍵kosy)+MLP-v1 | 43.64 | 43.94 | 53.88 | 42.68 | 43.46 | 34.24 |
41
+ | *NEFT(🍵kosy)+MLP-v2 | 45.45 | 44.20 | 54.56 | 42.60 | 42.68 | 42.98 |
42
+ | ***NEFT(🍵kosy)+MLP-v3** | 46.31 | 43.34 | 54.54 | 43.38 | 44.11 | 46.16 |
43
+ | NEFT(🍵kosy)+Attention | 44.92 |42.92 | 54.48 | 42.99 | 43.00 | 41.20 |
44
+ | NEFT(🍵kosy) | 45.08 | 43.09 | 53.61 | 41.06 | 43.47 | 43.21 |
45
+ > *Different Hyperparameters such that learning_rate, batch_size, epoch, etc...
46
+
47
+ # Implementation Code
48
+ ```python
49
+ ### KO-Platypus
50
+ from transformers import AutoModelForCausalLM, AutoTokenizer
51
+ import torch
52
+
53
+ repo = "kyujinpy/Koisy-Platypus2-13B"
54
+ OpenOrca = AutoModelForCausalLM.from_pretrained(
55
+ repo,
56
+ return_dict=True,
57
+ torch_dtype=torch.float16,
58
+ device_map='auto'
59
+ )
60
+ OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
61
+ ```
62
+
63
+ ---