l3cube-pune
commited on
Commit
·
ff5d400
1
Parent(s):
b86d5db
Update model files
Browse files- README.md +58 -58
- config_sentence_transformers.json +2 -2
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -5,69 +5,15 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
9 |
-
- multilingual
|
10 |
-
- hi
|
11 |
-
- mr
|
12 |
-
- kn
|
13 |
-
- ta
|
14 |
-
- te
|
15 |
-
- ml
|
16 |
-
- gu
|
17 |
-
- or
|
18 |
-
- pa
|
19 |
-
- bn
|
20 |
-
widget:
|
21 |
-
- source_sentence: "दिवाळी आपण मोठ्या उत्साहाने साजरी करतो"
|
22 |
-
sentences:
|
23 |
-
- "दिवाळी आपण आनंदाने साजरी करतो"
|
24 |
-
- "दिवाळी हा दिव्यांचा सण आहे"
|
25 |
-
example_title: "Monolingual- Marathi"
|
26 |
-
|
27 |
-
- source_sentence: "हम दीपावली उत्साह के साथ मनाते हैं"
|
28 |
-
sentences:
|
29 |
-
- "हम दीपावली खुशियों से मनाते हैं"
|
30 |
-
- "दिवाली रोशनी का त्योहार है"
|
31 |
-
example_title: "Monolingual- Hindi"
|
32 |
-
|
33 |
-
- source_sentence: "અમે ઉત્સાહથી દિવાળી ઉજવીએ છીએ"
|
34 |
-
sentences:
|
35 |
-
- "દિવાળી આપણે ખુશીઓથી ઉજવીએ છીએ"
|
36 |
-
- "દિવાળી એ રોશનીનો તહેવાર છે"
|
37 |
-
example_title: "Monolingual- Gujarati"
|
38 |
-
|
39 |
-
- source_sentence: "आम्हाला भारतीय असल्याचा अभिमान आहे"
|
40 |
-
sentences:
|
41 |
-
- "हमें भारतीय होने पर गर्व है"
|
42 |
-
- "భారతీయులమైనందుకు గర్విస్తున్నాం"
|
43 |
-
- "અમને ભારતીય હોવાનો ગર્વ છે"
|
44 |
-
example_title: "Cross-lingual 1"
|
45 |
-
|
46 |
-
- source_sentence: "ਬਾਰਿਸ਼ ਤੋਂ ਬਾਅਦ ਬਗੀਚਾ ਸੁੰਦਰ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ"
|
47 |
-
sentences:
|
48 |
-
- "മഴയ്ക്ക് ശേഷം പൂന്തോട്ടം മനോഹരമായി കാണപ്പെടുന്നു"
|
49 |
-
- "ବର୍ଷା ପରେ ବଗିଚା ସୁନ୍ଦର ଦେଖାଯାଏ |"
|
50 |
-
- "बारिश के बाद बगीचा सुंदर दिखता है"
|
51 |
-
example_title: "Cross-lingual 2"
|
52 |
---
|
53 |
|
54 |
-
#
|
55 |
|
56 |
-
This is a
|
57 |
-
The single model works for Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
|
58 |
-
The model also has cross-lingual capabilities. <br>
|
59 |
-
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
|
60 |
|
61 |
-
|
62 |
|
63 |
-
```
|
64 |
-
@article{joshi2022l3cubemahasbert,
|
65 |
-
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
|
66 |
-
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
|
67 |
-
journal={arXiv preprint arXiv:2211.11187},
|
68 |
-
year={2022}
|
69 |
-
}
|
70 |
-
```
|
71 |
## Usage (Sentence-Transformers)
|
72 |
|
73 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
@@ -124,3 +70,57 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
124 |
print("Sentence embeddings:")
|
125 |
print(sentence_embeddings)
|
126 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
+
# {MODEL_NAME}
|
12 |
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
|
|
|
|
|
|
14 |
|
15 |
+
<!--- Describe your model here -->
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
## Usage (Sentence-Transformers)
|
18 |
|
19 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
70 |
print("Sentence embeddings:")
|
71 |
print(sentence_embeddings)
|
72 |
```
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
## Evaluation Results
|
77 |
+
|
78 |
+
<!--- Describe how your model was evaluated -->
|
79 |
+
|
80 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
+
|
82 |
+
|
83 |
+
## Training
|
84 |
+
The model was trained with the parameters:
|
85 |
+
|
86 |
+
**DataLoader**:
|
87 |
+
|
88 |
+
`torch.utils.data.dataloader.DataLoader` of length 1977 with parameters:
|
89 |
+
```
|
90 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
+
```
|
92 |
+
|
93 |
+
**Loss**:
|
94 |
+
|
95 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
96 |
+
|
97 |
+
Parameters of the fit()-Method:
|
98 |
+
```
|
99 |
+
{
|
100 |
+
"epochs": 4,
|
101 |
+
"evaluation_steps": 0,
|
102 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
103 |
+
"max_grad_norm": 1,
|
104 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
105 |
+
"optimizer_params": {
|
106 |
+
"lr": 2e-05
|
107 |
+
},
|
108 |
+
"scheduler": "WarmupLinear",
|
109 |
+
"steps_per_epoch": null,
|
110 |
+
"warmup_steps": 790,
|
111 |
+
"weight_decay": 0.01
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+
## Full Model Architecture
|
117 |
+
```
|
118 |
+
SentenceTransformer(
|
119 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
120 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
+
)
|
122 |
+
```
|
123 |
+
|
124 |
+
## Citing & Authors
|
125 |
+
|
126 |
+
<!--- Describe where people can find more information -->
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.2.2",
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "1.13.
|
6 |
}
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.26.1",
|
5 |
+
"pytorch": "1.13.1+cu116"
|
6 |
}
|
7 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 950293293
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ebe74695af9bbcf59fc53bee524c34a6e01531c032c0c9daa0ca9bc93f67f31
|
3 |
size 950293293
|