lafarizo commited on
Commit
a1f7032
·
verified ·
1 Parent(s): 517fb44

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -10
README.md CHANGED
@@ -36,30 +36,23 @@ This model is a fine-tuned version of GPT-2 for medical chatbot in the Indonesia
36
  from transformers import AutoModelForCausalLM, AutoTokenizer
37
  import torch
38
 
39
- # Load pre-trained model and tokenizer
40
  model_name = "lafarizo/indo_medical_gpt2_v2"
41
  model = AutoModelForCausalLM.from_pretrained(model_name)
42
  tokenizer = AutoTokenizer.from_pretrained(model_name)
43
 
44
- # Ensure the model is on the correct device (GPU or CPU)
45
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
46
  model.to(device)
47
 
48
- # Ensure pad_token is set to avoid issues during generation
49
  if tokenizer.pad_token is None:
50
  tokenizer.pad_token = tokenizer.eos_token
51
 
52
- # Take input from the user
53
  input_text = input("Pertanyaan: ")
54
 
55
- # Tokenize the input text
56
  inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
57
 
58
- # Move tensors to the same device as the model
59
  input_ids = inputs['input_ids'].to(device)
60
  attention_mask = inputs['attention_mask'].to(device)
61
 
62
- # Generate output from the model
63
  outputs = model.generate(
64
  input_ids=input_ids,
65
  attention_mask=attention_mask,
@@ -74,12 +67,9 @@ outputs = model.generate(
74
  pad_token_id=tokenizer.pad_token_id
75
  )
76
 
77
- # Decode the output and remove input question from the generated answer
78
  generated_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
79
 
80
- # Remove the input question from the generated answer if it repeats
81
  if generated_answer.lower().startswith(input_text.lower()):
82
  generated_answer = generated_answer[len(input_text):].strip()
83
 
84
- # Output the answer
85
  print("Jawaban: ", generated_answer)
 
36
  from transformers import AutoModelForCausalLM, AutoTokenizer
37
  import torch
38
 
 
39
  model_name = "lafarizo/indo_medical_gpt2_v2"
40
  model = AutoModelForCausalLM.from_pretrained(model_name)
41
  tokenizer = AutoTokenizer.from_pretrained(model_name)
42
 
 
43
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
44
  model.to(device)
45
 
 
46
  if tokenizer.pad_token is None:
47
  tokenizer.pad_token = tokenizer.eos_token
48
 
 
49
  input_text = input("Pertanyaan: ")
50
 
 
51
  inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
52
 
 
53
  input_ids = inputs['input_ids'].to(device)
54
  attention_mask = inputs['attention_mask'].to(device)
55
 
 
56
  outputs = model.generate(
57
  input_ids=input_ids,
58
  attention_mask=attention_mask,
 
67
  pad_token_id=tokenizer.pad_token_id
68
  )
69
 
 
70
  generated_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
71
 
 
72
  if generated_answer.lower().startswith(input_text.lower()):
73
  generated_answer = generated_answer[len(input_text):].strip()
74
 
 
75
  print("Jawaban: ", generated_answer)