Update README.md
Browse files
README.md
CHANGED
@@ -36,30 +36,23 @@ This model is a fine-tuned version of GPT-2 for medical chatbot in the Indonesia
|
|
36 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
37 |
import torch
|
38 |
|
39 |
-
# Load pre-trained model and tokenizer
|
40 |
model_name = "lafarizo/indo_medical_gpt2_v2"
|
41 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
42 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
|
44 |
-
# Ensure the model is on the correct device (GPU or CPU)
|
45 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
46 |
model.to(device)
|
47 |
|
48 |
-
# Ensure pad_token is set to avoid issues during generation
|
49 |
if tokenizer.pad_token is None:
|
50 |
tokenizer.pad_token = tokenizer.eos_token
|
51 |
|
52 |
-
# Take input from the user
|
53 |
input_text = input("Pertanyaan: ")
|
54 |
|
55 |
-
# Tokenize the input text
|
56 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
57 |
|
58 |
-
# Move tensors to the same device as the model
|
59 |
input_ids = inputs['input_ids'].to(device)
|
60 |
attention_mask = inputs['attention_mask'].to(device)
|
61 |
|
62 |
-
# Generate output from the model
|
63 |
outputs = model.generate(
|
64 |
input_ids=input_ids,
|
65 |
attention_mask=attention_mask,
|
@@ -74,12 +67,9 @@ outputs = model.generate(
|
|
74 |
pad_token_id=tokenizer.pad_token_id
|
75 |
)
|
76 |
|
77 |
-
# Decode the output and remove input question from the generated answer
|
78 |
generated_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
79 |
|
80 |
-
# Remove the input question from the generated answer if it repeats
|
81 |
if generated_answer.lower().startswith(input_text.lower()):
|
82 |
generated_answer = generated_answer[len(input_text):].strip()
|
83 |
|
84 |
-
# Output the answer
|
85 |
print("Jawaban: ", generated_answer)
|
|
|
36 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
37 |
import torch
|
38 |
|
|
|
39 |
model_name = "lafarizo/indo_medical_gpt2_v2"
|
40 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
|
|
|
43 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
44 |
model.to(device)
|
45 |
|
|
|
46 |
if tokenizer.pad_token is None:
|
47 |
tokenizer.pad_token = tokenizer.eos_token
|
48 |
|
|
|
49 |
input_text = input("Pertanyaan: ")
|
50 |
|
|
|
51 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
52 |
|
|
|
53 |
input_ids = inputs['input_ids'].to(device)
|
54 |
attention_mask = inputs['attention_mask'].to(device)
|
55 |
|
|
|
56 |
outputs = model.generate(
|
57 |
input_ids=input_ids,
|
58 |
attention_mask=attention_mask,
|
|
|
67 |
pad_token_id=tokenizer.pad_token_id
|
68 |
)
|
69 |
|
|
|
70 |
generated_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
71 |
|
|
|
72 |
if generated_answer.lower().startswith(input_text.lower()):
|
73 |
generated_answer = generated_answer[len(input_text):].strip()
|
74 |
|
|
|
75 |
print("Jawaban: ", generated_answer)
|